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ABSTRACT 

In 2017, the Labour Force Survey in Belgium became a panel study. This makes it possible to survey people about their labour 
market status over an 18-month period, and to determine whether those in employment are still employed three months or 
one year later, or may have become unemployed or inactive; similarly for the unemployed and inactive. Our objective is 
therefore to quantify the nine possible transitions between the three labour market statuses (unemployed, employed and 
inactive). In other words, we intend to estimate 3-by-3 labour market transition matrices. 

However, estimating these transition matrices is not as simple as it may seem at first glance: after all, we want the row and 
column totals of the transition matrices to be consistent with the quarterly or annual figures that can be calculated from the 
quarterly or annual samples, and for which the results are published as official indicators. We will explain the method in detail 
in this analysis. 

We begin the analysis with an explanation of the structure of the data, and what transitions are possible, in chapter 1. In 
chapter 2, we will then go into more detail in the methodology, which is entirely based on calibration. In this regard, we took 
the method used by Eurostat, the European Statistical Office, as our starting point, but we went a step further in order to 
provide a wide range of breakdowns by various background variables, without losing (too much) coherence with the official 
indicators. The result of the methodological developments is a fully integrated calibration model. Finally, in chapter 3 we 
discuss the publication of the estimated transition matrices, and illustrate the difficulties that may arise when transition 
matrices have to be estimated for smaller sub-populations. With the example of short and long-term unemployed in section 
3.4, we show how the transitions in specific sub-populations can be studied. 

In the conclusions we summarise the principle findings from our methodological developments. 

The focus of this analysis is on the methodology, not on the interpretation, socio-economic explanation or use of the results. 
A concise discussion of the results can be found on the website of Statbel, the Belgian statistical office, whenever new 
estimates are published, for example in the form of press releases. 
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1 Introduction 

Since the introduction of a panel in the Belgian Labour Force Survey (LFS), not only can we publish quarterly and annual 
figures, but it is also possible to estimate the transitions in ILO labour market status – i.e. "employed", "unemployed" or 
"inactive" – (in short: ILO status3) from one quarter or year to the next. In this way, it is possible to see how the ILO status of 
the respondent changes over a number of quarters. The ILO status is by far the most important variable in the Labour Force 
Survey. This variable indicates whether a person is employed, unemployed or inactive in the reference week according to 
internationally applied definitions4. Transition matrices, which contain the (estimated) numbers of people moving from one 
ILO status to another, can give an indication of the extent to which unemployed people find work, working people stay 
employed, etc. After three years of data collection in a panel, there is a limited set of data available that makes it possible to 
show transitions, and trends in transitions. 

In 2017, Statbel, the Belgian statistical office, introduced a rotating panel design for the LFS: every quarter, a new sample or 
rotation group (RG) is drawn and brought into the field. The panel design is rotating in the sense that every quarter about 
one fourth of the so-called quarterly sample is replaced by a new selection. Respondents in the same RG are interviewed for 
two consecutive quarters, then not interviewed for two quarters and then interviewed again for the subsequent two quarters 
(Termote & Depickere, 2018). We refer to this as a 2(2)2 scenario, and the survey of each RG is therefore spread over six 
quarters. The first time a respondent participates, we refer to the first wave (W1), the second time to the second wave (W2), 
and so on. Scheme 1 in Termote & Depickere (2018) illustrates this. Since the first quarter of 2018, the quarterly results, 
based on the quarterly sample, have always been based on data from four waves (for four different RGs); see scheme 2 in 
Termote & Depickere (2018). Quarterly results in 2017 are based on quarterly samples that are somewhat different in 
composition; see scheme 4 in Termote & Depickere (2018). 

Scheme 4 in Termote & Depickere (2018) also shows that the panel design was already introduced in the third quarter of 
2016. However, the first five RGs were surveyed according to scenarios different from the 2(2)2 scenario. The period from 
the third quarter of 2016 to the fourth quarter of 2017 is a transitional phase, which was necessary to allow the transition 
from the continuous survey to a panel survey, considering various requirements. 

Based on these panel data, we will calculate three types of transitions: quarterly transitions (transitions between consecutive 
quarters), annual transitions per quarter (transitions between the same quarters in two consecutive years, also called 
quarter-specific annual transitions) and annual transitions (transitions between consecutive years). We will explain these in 
more detail below. 

1.1 Quarterly transitions: transitions between consecutive quarters 

Quarterly transitions are based on the overlap of quarterly samples for two consecutive quarters – we refer to the begin 
quarter (BQ) and the end quarter (EQ) –, for example, the third and fourth quarters of 2019 (2019Q3 and 2019Q4, 
respectively), or the fourth quarter of 2019 and the first quarter of 2020 (2019Q4 and 2020Q1, respectively). This overlap, 
which we will call a longitudinal sample (LS) for estimating quarterly transitions, meets a Eurostat requirement of the panel 
design for the LFS5: there must be a minimum theoretical sample overlap of 50% between two consecutive quarterly samples. 
The Belgian panel design complies with this: the overlap of the quarterly samples for 2019Q3 and 2019Q4, for example, 
consists of RG13, with observations for each respondent in W3 and W4, and RG17, with observations for each respondent in 
W1 and W2. Two of the four RGs (i.e. 50% of the original samples) in each of the two quarterly samples therefore give rise to 
observations in two consecutive quarters. 

 
3 With this terminology we indicate that the definitions of the International Labour Office (ILO) are used: concepts such as "employed", "unemployed" and 
"inactive" should always be interpreted according to the ILO definitions in this analysis. 

4 See (Dutch only) https://statbel.fgov.be/nl/themas/werk-opleiding/arbeidsmarkt/faq. 

5 Regulation 2019/1700 establishing a common framework for European statistics relating to persons and households (https://eur-lex.europa.eu/legal-
content/EN/ALL/?uri=CELEX:32019R1700). 

https://statbel.fgov.be/nl/themas/werk-opleiding/arbeidsmarkt/faq
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32019R1700
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32019R1700
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Note that each LS for estimating quarterly transitions contains respondents from a well-defined RG with observations in W1 
and W2, and respondents from another well-defined RG with observations in W3 and W4. This is an immediate consequence 
of applying the 2(2)2 scenario. 

Results on quarterly transitions were published by Eurostat until the end of 2020 based on its proper methodology. Statbel 
has now developed its own methodology, inspired by the Eurostat methodology, to quantify transitions itself. From 2021 
onwards, Statbel produces and publishes the transition matrices itself, and the previous estimates produced and published 
by Eurostat will be replaced by Statbel's estimates. 

1.2 Annual transitions per quarter: transitions between the same quarters in two 
consecutive years 

Annual transitions per quarter, or quarter-specific annual transitions, are based on the overlap of quarterly samples for the 
same quarter in two consecutive years, e.g. 2018Q2 and 2019Q2, or 2019Q3 and 2020Q3; again, we refer to a BQ and an EQ. 
This overlap, which we will call a longitudinal sample (LS) for estimating annual transitions per quarter, meets another 
Eurostat requirement related to the panel design for the LFS: there must be a minimum theoretical sample overlap of 20% 
between quarterly samples for the same quarter in two consecutive years. The Belgian panel design complies with this: the 
overlap of the quarterly samples for 2018Q2 and 2019Q2, for example, consists of RG11, with observations for each 
respondent in W2 and W4, and RG12, with observations for each respondent in W1 and W3; thus, two of the four RGs (i.e. 
50% of the original samples) in each of the two quarterly samples give rise to observations in BQ and EQ. With this 
"theoretical" overlap of 50%, the Belgian panel design is therefore well above the required 20%. 

Note that each LS for estimating quarter-specific annual transitions contains respondents from a well-defined RG with 
observations in W1 and W3, and respondents from another well-defined RG with observations for W2 and W4. This is also 
an immediate consequence of applying the 2(2)2 scenario. 

Results on quarter-specific annual transitions are not published by Eurostat, as for some countries the longitudinal sample 
(LS) is too small in this regard, given the requested theoretical overlap of only 20%. Since in the Belgian LFS there is a 
theoretical overlap of 50%, Statbel will be able to produce and publish part of the results for these annual transitions. 

1.3 Annual transitions: transitions between consecutive years 

To obtain the (global) annual transitions, we take the average of four quarter-specific annual transitions. Results on annual 
transitions are published by Eurostat based on its own methodology. Statbel now also produces and publishes figures, using 
the methodology described in this analysis. 

The LFS is subject to non-response and, as a panel survey, to attrition (despite its mandatory nature). On average, 74.4% of 
the selected persons responded positively to the first interview (figures for surveys conducted in 2019). Among the 
respondents in the first wave, 87.2% still participate in the second wave, 90.1% in the third and 93.8% in the fourth. Thus, on 
average, 54.8% of the original sample remains in the fourth wave. Among those who do not participate, not all have refused 
to participate: the initial address can be wrong, some people moved, the pollsters fail to make contact with the household, 
etc. Therefore, the overlap between the quarterly samples is in practice smaller than the theoretical 50% discussed above. 
Furthermore, the overlap is slightly smaller for the annual transitions compared to the quarterly transitions6. 

1.4 Transition matrices 

Quarterly transitions between BQ and EQ can be represented in a transition matrix, i.e. a table, as in Scheme 1 below, with 
on the diagonal (in the grey cells) the numbers of individuals who do not change their ILO status between BQ and EQ7 (e.g. 

 
6 For example, the annual transition 2019Q1-2020Q1 counts 12,667 unweighted observations; the quarterly transition 2019Q4-2020Q1 counts 14,507 
unweighted observations. 

7 For some respondents, the ILO status can change several times between the observation in the BQ and the observation in the EQ. However, only the 
statuses in the reference weeks (in BQ and EQ) are registered; intermediate statuses are not noted. It may therefore be the case that a respondent changes 
status unnoticed, but the registered status in BQ and EQ is the same; such a respondent contributes to the numbers on the diagonal of the transition matrix. 
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those who are inactive in the reference week in the BQ and in the reference week in the EQ) and in the other cells the 
numbers of individuals who do change their ILO status (e.g. from employed in the reference week in the BQ to inactive in the 
reference week in the EQ). The matrix is completed with marginals: (1) the row totals in the last column, reflecting the 
distribution of ILO status in the BQ; (2) the column totals in the last row, reflecting the distribution of ILO status in the EQ; 
(3) the total number of persons. The numbers in a transition matrix are estimated numbers of individuals in a particular (sub-
)population under study: in Scheme 1 we use the notation 𝑁𝑁� (i.e. 𝑁𝑁�11, ...) for the estimates of the actual (sub-)population 
numbers 𝑁𝑁 (i.e. 𝑁𝑁11, …). 

Scheme 1 General representation of an estimated transition matrix, with marginals 

  ILO status in end quarter (EQ) Total in 

begin quarter (BQ)  
 

Unemployed Employed  Inactive 

ILO status in begin 
quarter (BQ) 

 Unemployed 𝑁𝑁�𝟏𝟏𝟏𝟏 𝑁𝑁�𝟏𝟏𝟏𝟏 𝑁𝑁�𝟏𝟏𝟏𝟏 𝑁𝑁�𝟏𝟏+ 

 Employed  𝑁𝑁�𝟏𝟏𝟏𝟏 𝑁𝑁�𝟏𝟏𝟏𝟏 𝑁𝑁�𝟏𝟏𝟏𝟏 𝑁𝑁�𝟏𝟏+ 

 Inactive 𝑁𝑁�𝟏𝟏𝟏𝟏 𝑁𝑁�𝟏𝟏𝟏𝟏 𝑁𝑁�𝟏𝟏𝟏𝟏 𝑁𝑁�𝟏𝟏+ 

Total in end quarter (EQ) 𝑁𝑁�+𝟏𝟏 𝑁𝑁�+𝟏𝟏 𝑁𝑁�+𝟏𝟏 𝑁𝑁�++ 

 

1.5 Relative transition matrices, or transition percentage matrices 

Relative transitions can be obtained by dividing the numbers in the cells per row 𝑖𝑖 by the corresponding row totals and 
multiplying by 100, i.e. �̂�𝑝𝑗𝑗|𝑖𝑖 = 100 × 𝑁𝑁�𝑖𝑖𝑗𝑗 𝑁𝑁�𝑖𝑖+⁄ ; the percentage thus obtained is an estimate for the percentage 𝑝𝑝𝑗𝑗|𝑖𝑖 =
100 × 𝑁𝑁𝑖𝑖𝑗𝑗 𝑁𝑁𝑖𝑖+⁄  of individuals in status 𝑖𝑖 (e.g. unemployed) in the BQ, which end up in status 𝑗𝑗 (e.g. employed) in the EQ. The 
last row contains the estimated percentage distribution of ILO status in the EQ: �̂�𝑝+𝒋𝒋 = 100 × 𝑁𝑁�+𝑗𝑗 𝑁𝑁�++⁄ . A relative transition 
matrix, hereafter referred to as a transition percentage matrix, is presented schematically in Scheme 2. 

Scheme 2 General representation of a transition percentage matrix, with marginals 

  ILO status in end quarter (EQ) Total in 

begin quarter (BQ)  
 

Unemployed Employed  Inactive 

ILO status in begin 
quarter (BQ) 

 Unemployed �̂�𝑝𝟏𝟏|𝟏𝟏 �̂�𝑝𝟏𝟏|𝟏𝟏 �̂�𝑝𝟏𝟏|𝟏𝟏 100% 

 Employed  �̂�𝑝𝟏𝟏|𝟏𝟏 �̂�𝑝𝟏𝟏|𝟏𝟏 �̂�𝑝𝟏𝟏|𝟏𝟏 100% 

 Inactive �̂�𝑝𝟏𝟏|𝟏𝟏 �̂�𝑝𝟏𝟏|𝟏𝟏 �̂�𝑝𝟏𝟏|𝟏𝟏 100% 

Total in end quarter (EQ) �̂�𝑝+𝟏𝟏 �̂�𝑝+𝟏𝟏 �̂�𝑝+𝟏𝟏 100% 

In the Excel files on the Statbel website (see chapter 3), for each transition matrix, the corresponding transition percentage 
matrix will also be published. 

A transition matrix as shown in Scheme 1 can be transformed not only into a transition percentage matrix as shown in Scheme 
2, by calculating row percentages �̂�𝑝𝑗𝑗|𝑖𝑖 , but also into an alternative transition percentage matrix by calculating column 
percentages, namely 𝑞𝑞�𝑖𝑖|𝑗𝑗 = 100 × 𝑁𝑁�𝑖𝑖𝑗𝑗 𝑁𝑁�+𝑗𝑗� . These column percentages 𝑞𝑞�𝑖𝑖|𝑗𝑗  indicate what percentage of individuals in status 
𝑗𝑗 in the EQ were in status 𝑖𝑖 in the BQ, while row percentages �̂�𝑝𝑗𝑗|𝑖𝑖 indicate what percentage of individuals in status 𝑖𝑖 in the BQ 
will be in status 𝑗𝑗 in the EQ. The interpretation of the results in a transition matrix can lead to one or both types of (equivalent) 
percentages, depending on the user's point of view. For the methodological explanation in this analysis, it does not matter 
which relative transitions are used; in this text, the term "transition percentage matrix" always refers to row percentages 
�̂�𝑝𝑗𝑗|𝑖𝑖, and we only present row percentages in the tables. 
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In section 1.3 it was stated that an annual transition matrix is obtained as an average of four quarter-specific annual transition 
matrices (in section 2.9 this is further explored methodologically). Each of the four quarter-specific annual transition matrices 
is accompanied by a quarter-specific annual transition percentage matrix. It is important to note that the annual transition 
percentage matrix associated with the annual transition matrix should not be calculated as an average of the four quarter-
specific annual transition percentage matrices, but directly from the annual transition matrix. 

Transition percentages can be visualised in a diagram, e.g. for the annual transitions between 2019 and 2020: 

 

This diagram shows that, as estimated: 

 among the unemployed in 2019, 38.9% are still unemployed in 2020, 26.9% are working in 2020 and 34.2% are 
inactive in 2020; 

 among those working in 2019, 92.3% are still working in 2020, 1.8% are unemployed in 2020 and 5.9% are inactive 
in 2020; 

 among the inactive in 2019, 89.5% are still inactive in 2020, 2.6% are unemployed in 2020 and 7.9% are working in 
2020. 
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1.6 Unweighted transition matrices, or sample size matrices 

Finally, each published estimated transition matrix will also be accompanied by an associated "unweighted transition matrix", 
which is simply the matrix with the numbers of respondents in the LS on which the transition matrix is based: we therefore 
also refer to a sample size matrix. We schematically present a sample size matrix in Scheme 3. 

Scheme 3 General representation of a sample size matrix, with marginals 

  ILO status in end quarter (EQ) Total in 

begin quarter (BQ)  
 

Unemployed Employed  Inactive 

ILO status in begin 
quarter (EQ) 

 Unemployed 𝑛𝑛𝟏𝟏𝟏𝟏 𝑛𝑛𝟏𝟏𝟏𝟏 𝑛𝑛𝟏𝟏𝟏𝟏 𝑛𝑛𝟏𝟏+ 

 Employed  𝑛𝑛𝟏𝟏𝟏𝟏 𝑛𝑛𝟏𝟏𝟏𝟏 𝑛𝑛𝟏𝟏𝟏𝟏 𝑛𝑛𝟏𝟏+ 

 Inactive 𝑛𝑛𝟏𝟏𝟏𝟏 𝑛𝑛𝟏𝟏𝟏𝟏 𝑛𝑛𝟏𝟏𝟏𝟏 𝑛𝑛𝟏𝟏+ 

Total in end quarter (EQ) 𝑛𝑛+𝟏𝟏 𝑛𝑛+𝟏𝟏 𝑛𝑛+𝟏𝟏 𝑛𝑛++ 

A sample size matrix shows the unweighted distribution of the LS by ILO status in the BQ and in the EQ. The transition matrix 
shows the weighted distribution of the LS by ILO status in the BQ and in the EQ: each estimate 𝑁𝑁�𝑖𝑖𝑗𝑗  in the transition matrix is 
the sum of the longitudinal calibrated weights for the corresponding 𝑛𝑛𝒊𝒊𝒋𝒋 respondents in the LS. The sample size matrix gives 
indications on the reliability of the estimated transition (percentage) matrix: the larger the number 𝑛𝑛𝒊𝒊𝒋𝒋, the more accurate 
the estimates 𝑁𝑁�𝑖𝑖𝑗𝑗  and �̂�𝑝𝑖𝑖|𝑗𝑗. 

In the Excel files on the Statbel website (see chapter 3), for each transition matrix, the corresponding sample size matrix will 
also be published. 

Note that the sample size matrix associated with an annual transition matrix is simply the sum of the sample size matrices 
associated with the four quarter-specific annual transition matrices. 

Calculating the longitudinal calibrated weights is the central subject of this analysis: see chapter 2. 
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2 Methodology 

The methodology developed by Statbel will be illustrated in this section using the pair of consecutive quarters 2018Q3 and 
2018Q4, for which quarterly transitions will be estimated. The methodology is the same for estimating quarter-specific annual 
transitions, based on pairs of the same quarters in consecutive years. 

Our methodological explanation differs from that of Eurostat (Eurostat, 2015a and Eurostat, 2015b) by rigorously using 
general calibration methodology, as developed by Deville and Särndal (1992). This also includes suitable general software: 
Statbel uses the SAS® macro CALMAR2 (Le Guennec and Sautory, 2002 and Sautory, 1993). This allows simpler models (as 
introduced by Eurostat) to be systematically extended to broaden the objectives without making the calculations more 
difficult. 

Statbel's methodology for estimating quarterly transitions and quarter-specific annual transitions is discussed in detail in 
sections 2.1 to 2.7. In section 2.8 we compare this methodology with the one introduced by Eurostat (2015b). 

In section 2.9 we discuss estimates of (global) annual transitions, as simple averages of the quarter-specific annual transitions. 

2.1 Calibration and calibration variables 

Calibration is the process whereby initial weights for the units in a sample are corrected, so that for certain variables the final 
weighted sample distribution is the same as an (estimated) reference distribution. The sample referred to in this analysis is 
the longitudinal sample (see section 2.2.3), and the units in this sample are individual respondents. The variables considered 
are referred to as calibration variables. The final corrected weights are referred to as longitudinal calibrated weights. Some 
principles and (practical) features of calibration techniques are explained in annex B. 

A calibration variable is therefore a variable for which the distribution in the calibrated sample must be the same as an 
(estimated) reference distribution. The following characteristics of the respondents are potential calibration variables 
considered in this analysis: 

 STAT1, the ILO status in the BQ, and STAT2, the ILO status in the EQ, with values (categories): 

o Missing for respondents in age group 0-14 

o Unemployed, Employed or Inactive for respondents in age group 15+; 

 SEX, the sex – which is assumed not to change between the BQ and the EQ – with values Male and Female; 

 AGE1, the age group in the BQ, and AGE2, the age group in the EQ, with values (categories) 0-14, 15-24, 25-34, 35-
44, 45-54, 55-64, 65-74 and 75+; if necessary, we work with a further grouping of these age groups, e.g. AGE1 and 
AGE2 with groups 0-14, 15-34, 35-54, 55-74 and 75+, or AGE1 and AGE2 with groups 0-14, 15-29, 30-74 and 75+; 

 REG1, the region of domicile in the BQ, and REG2, the region of domicile in the EQ, with values BRU (Brussels-Capital 
Region), VLA (Flemish Region) and WAL (Walloon Region); 

 NAT1, the nationality category in the BQ, and NAT2, the nationality category in the EQ, with values (categories) BE 
(Belgian), EU (EU28-nationality, excluding Belgium) and Nt-EU (not EU28-nationality); if necessary, we work with a 
further grouping, e.g. NAT1 and NAT2 with categories BE and Nt-BE; 

 EDU1, the highest level of education attained in the BQ, and EDU2, the highest level of education attained in the EQ, 
with values (categories) Low (no diploma, or at most a lower secondary education diploma), Middle (upper 
secondary education diploma) and High (at least a higher education diploma). 

Respondents in a sample to be calibrated are excluded if for one or more of these variables the value is undetermined 
(missing). Notice that two types of calibration variables can be distinguished, i.e. background variables (sex, age, region of 
domicile, nationality and education level) and study variables (ILO status). 

Changing the value of a calibration variable between BQ and EQ for some respondents does not pose any problem. For sex 
(SEX), we did not find any such respondents, but the possibility exists for this variable as well; in the latter case, we would 
consider variables SEX1 and SEX2. Age group (AGE) inevitably changes for a substantial number of respondents between BQ 
and EQ. Region of domicile (REG), nationality (NAT) and highest level of education (EDU) change to a lesser extent between 
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BQ and EQ. Change of ILO status between BQ and EQ is the subject of this study; the variables STAT1 and STAT2 play a special 
role as calibration variables. 

2.2 The samples 

For the estimation of transitions between any given pair of quarters, i.e. for the estimation of both quarterly transitions and 
quarter-specific annual transitions, three samples (of respondents8) come into the picture. We discuss these three samples 
in the following three sub-sections. 

2.2.1 The begin quarter sample 

This is the sample of respondents in the BQ. This sample contains respondents from four RGs. To estimate quarterly statistics 
(for core variables), the BQ sample was calibrated to population distributions of various background variables. This provided 
a calibrated weight 𝑤𝑤𝑖𝑖

𝐵𝐵𝐵𝐵  for each respondent 𝑖𝑖 in the BQ sample. 

For 2018Q3 the BQ sample contains respondents from RGs 8, 9, 12 and 13; see scheme 1 in Termote & Depickere (2018). In 
the present analysis, this sample is limited to respondents in the age group 15-74. 

The BQ sample provides estimated population distributions (for age group 15-74) that will be used as reference distributions 
in the calibration of the longitudinal sample (LS); this is discussed further in section 2.3. 

2.2.2 The end quarter sample 

This is the sample of respondents in the EQ. This sample contains respondents from four RGs. To estimate quarterly statistics 
(for core variables), the EQ sample was calibrated to population distributions of various background variables. This provided 
a calibrated weight 𝑤𝑤𝑖𝑖

𝐸𝐸𝐵𝐵  for each respondent 𝑖𝑖 in the EQ sample. 

For 2018Q4 the EQ sample contains respondents from RGs 9, 10, 13 and 14; see scheme 1 in Termote & Depickere (2018). In 
the present analysis, this sample is limited to respondents in the age group 15-74. 

The EQ sample provides estimated population distributions (for age group 15-74) that will be used as reference distributions 
in the calibration of the longitudinal sample (LS); this is discussed further in section 2.3. 

2.2.3 The longitudinal sample (LS) 

The longitudinal sample (LS) is the overlap (or intersection) of the BQ and EQ samples, i.e. the collection of all respondents 
who were observed in both the BQ and the EQ. In the data files containing the BQ and the EQ samples, the respondents are 
identified by a unique respondent number, which does not change over the waves. The data file with the LS can therefore 
easily be constructed by matching the data files with the BQ and the EQ sample on that respondent number. For the pair 
2018Q3-2018Q4, this overlap is limited to respondents in two RGs, namely RG9 and RG13; for RG9 we have observations 
from waves 3 and 4, for RG13 we have observations from waves 1 and 2 (see scheme 1 in Termote & Depickere (2018)). 
Schematically: 

Begin 
quarter 

End 
quarter 

RGs in the 
overlap 

1st RG 2nd RG 
Observations from waves… 

2018Q3 2018Q4 9 and 13 3 and 4 1 and 2 
 

Table B 1 in annex A shows all possible pairs of consecutive quarters since the start of the panel in 2016Q3, with the RGs in 
the LS, and for each of these RGs the consecutive waves in which respondents in the LS were interviewed. The table was 
derived from schemes 1 and 4 in Termote & Depickere (2018). Table B 1 shows a standard composition of the LSs from the 
pair 2017Q4-2018Q1 onward: two RGs, one containing respondents with observations in waves 3 and 4, and the other 
containing respondents with observations in waves 1 and 2. For earlier pairs, i.e. 2016Q3-2016Q4 to 2017Q3-2017Q4, except 
for the pair 2017Q1-2017Q2, the composition of the LS deviates from the standard composition: sometimes three RGs are 
involved and/or observations for respondents may also be available in waves 2 and 3; this is a consequence of the deviating 

 
8 All samples from this point in the text are samples of respondents; we will not always explicitly repeat this. 
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scenarios for RGs drawn in the start-up phase of the LFS panel (see scheme  4 in Termote & Depickere (2018)). These deviating 
compositions could potentially have an impact on the estimated quarterly transitions; see Termote & Depickere (2018). 

Table B 2 in annex A shows the composition of LSs for pairs of the same quarters in consecutive years; the table was derived 
from schemes 1 and 4 in Termote & Depickere (2018). In this table, too, we notice a standard composition from 2017Q1-
2018Q1 onward, and deviating compositions for 2016Q3-2017Q3 and 2016Q4-2017Q4, which are due to deviating scenarios 
for RGs drawn in the start-up phase of the LFS panel (see scheme 4 in Termote & Depickere (2018)). 

In this analysis, the LS is always restricted to respondents who are at least 15 and at most 74 years old (i.e. who have not yet 
turned 75) in both quarterly samples. This avoids a fourth ILO status, i.e. missing for 14-year-old people, in the transition 
matrices. 

For the respondents 𝑖𝑖 in an LS, the two calibrated weights 𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵  and 𝑤𝑤𝑖𝑖

𝐸𝐸𝐵𝐵  are available; it is the calibrated weight 𝑤𝑤𝑖𝑖
𝐸𝐸𝐵𝐵  from 

the EQ that will act as the initial weight in the calibration of the LS and that will therefore be corrected to arrive at the final 
(longitudinal) calibrated weight for estimating transitions. 

2.3 The reference distributions 

The BQ and EQ samples are reference samples from which estimates of the reference distributions of ILO status for the 
calibration of the LS are calculated. The calibrated weight is used for this purpose: 𝑤𝑤𝑖𝑖

𝐵𝐵𝐵𝐵  for calculating reference distributions 
from the BQ sample and 𝑤𝑤𝑖𝑖

𝐸𝐸𝐵𝐵  for calculating reference distributions from the EQ sample. In this way, for example, the 
estimated distribution of STAT1 (restricted to age group 15-74) in the BQ can be calculated: for each value 𝑏𝑏 of STAT1, the 
sum of the calibrated weights of the respondents for which STAT1 = 𝑏𝑏 is an estimate of the number of individuals in the 
population (restricted to age group 15-74) with STAT1 = 𝑏𝑏, and this estimate is used as a benchmark in the calibration of the 
LS (if STAT1 is a calibration variable). 

For BQ 2018Q3, the estimated population distribution of ILO status (STAT1)9, which will be one of the main calibration 
variables, is as follows: 

2018Q3 Unemployed Employed  Inactive Total 
Absolute (no. of persons) 300,215.88 4,785,248.91 3,325,058.21 8,410,523.00 
Relative (% individuals) 3.57% 56.90% 39.56% 100.00% 

 

For EQ 2018Q4, the estimated population distribution of ILO status (STAT2), which will be one of the main calibration 
variables, is as follows: 

2018Q4 Unemployed Employed  Inactive Total 
Absolute (no. of persons) 290,402.66 4,804,732.96 3,335,187.38 8,430,323.00 
Relative (% individuals) 3.44% 56.99% 39.56% 100.00% 

 

Reference distributions of ILO status will also be calculated by sex, by region, … and used in the calibration of LSs. In addition, 
estimated distributions of background variables (sex, region, age group, etc.) – without the intervention of ILO status – will 
also be used. 

2.4 Basic calibration models, for global transition matrices and transition matrices broken 
down by sex 

The main aim of the calibration of an LS is to make the marginals of estimated ILO status transition matrices consistent with 
known distributions of ILO status in BQ and EQ. In this section, we will build suitable calibration models step by step and 

 
9 Statbel does not publish (quarterly or annual) figures for the population of 15-74-year-olds; these figures can be found on the Eurostat website. More 
information on published figures can be found in chapter 3. 
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discuss the difficulties involved. In the following sections 2.5, 2.6 and 2.7 these calibration models are extended to achieve 
additional objectives. 

2.4.1 Calibration to global distributions of ILO status 

In this sub-section, we aim to adjust the global initial transition matrix for quarter pair 2018Q3-2018Q4 to global estimated 
distributions of ILO status in BQ (2018Q3) and in EQ (2018Q4). 

The LS for the pair 2018Q3-2018Q4 of consecutive quarters contains 13,510 respondents (in age group 15-74 in both 
quarters), for whom ILO status is known in 2018Q3 (STAT1) and 2018Q4 (STAT2). The unweighted sample transition matrix 
is shown in Table 1. Note that over 93% of the respondents do not change their ILO status. 

Table 1 Unweighted longitudinal sample 2018Q3-2018Q4, by ILO status in BQ and EQ 

ILO status 
2018Q3 

ILO status 2018Q4  
Unemployed Employed  Inactive Total 

Unemployed 224 120 130 474 

Employed   57 7,102 296 7,455 

Inactive 93 239 5,249 5,581 

Total 374 7,461 5,675 13,510 

Using the calibrated weights 𝑤𝑤𝑖𝑖
𝐸𝐸𝐵𝐵  of 2018Q4 for all 13,510 respondents 𝑖𝑖 in the LS, we obtain the initial weighted 3×3 

transition matrix, with marginals (i.e. row and column totals, labelled "Total"), in Table 2. 

Table 2 Initial transition matrix 2018Q3-2018Q4, and reference distributions 

ILO status 
2018Q3 

ILO status 2018Q4  Ref. distribution 2018Q3 
Unemployed Employed  Inactive Total (a) (b) (c) 

Unemployed 75,566.19 40,185.88 42,546.79 158,298.86 300,215.88 300,922.65 300,215.88 
Employed   20,888.66 2,304,490.45 93,986.41 2,419,365.52 4,785,248.91 4,796,514.31 4,785,248.91 
Inactive 40,808.23 85,134.34 1,466,478.06 1,592,420.62 3,325,058.21 3,332,886.05 3,344,858.21 
Total 137,263.08 2,429,810.66 1,603,011.26 4,170,085.00 8,410,523.00 8,430,323.00 8,430,323.00 
Ref. 
distribution 
2018Q4 

290,402.66 4,804,732.96 3,335,187.38 8,430,323.00  
  

The global total of the weights 𝑤𝑤𝑖𝑖
𝐸𝐸𝐵𝐵  for the respondents in the LS is only 4,170,085.00, which is very low compared to the 

estimated total population figures (for age group 15-74) 8,410,523.00 in 2018Q3 and 8,430,323.00 in 2018Q4. The reason for 
this is that the LS covers only two of the four RGs in each quarter, as discussed earlier. 

Adjusting the transition matrix in Table 2 to the reference distributions from BQ and EQ, which we also find in Table 2 in the 
column labelled "Ref. distribution 2018Q3 (a)" and in the row labelled "Ref. distribution 2018Q4", is a calibration of the LS 
according to a model with the following linear structure: 

 STAT1 + STAT2 (LS-1) 

This calibration cannot be performed immediately because of numerical inconsistency between the reference distributions: 
the totals are different. In calibration theory, this means that the calibration equations for model LS-1 are numerically 
inconsistent. This inconsistency can be eliminated in (at least) two ways: 

 The classical method: the reference distribution “Ref. distribution 2018Q3 (a)” from the BQ is multiplied by the factor 
8,430,323.00/8,410,523.00  ≅ 1.002354. We find the corrected distribution in the column labelled “Ref. distribution 
2018Q3 (b)” in Table 2; the underlining indicates that the figure in column (a) is adjusted for each ILO status. 
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 The Eurostat method10: only the figure for ILO status Inactive in the distribution “Ref. distribution 2018Q3 (a)” from 
the BQ is modified by the difference 8,430,323.00 – 8,410,523.00  = 19,800.00; i.e. 3,325,058.21 is adjusted to 
3,325,058.21 + 19,800.00 = 3,344,858.21. We find the corrected distribution in the column labelled “Ref. distribution 
2018Q3 (c)” in Table 2; the underlining indicates that only the figure for ILO status Inactive is adapted. 

Note that the factor 1.002354 in the classical method as well as the modification 19,800.00 in the Eurostat method reflect a 
(likely) population growth. The methods also work in the event of population shrinkage. 

After applying any of the two methods for obtaining numerical consistency – we refer to NC methods or models –, the LS can 
be calibrated, according to model LS-1, to a corrected reference distribution of ILO status in the BQ (2018Q3) and the 
reference distribution of ILO status in the EQ (2018Q4). The result of both calibrations for the pair 2018Q3-2018Q4 are 
presented in Table 3. Note that the marginals of the transition matrix are indeed equal to the corresponding (corrected) 
reference distributions. 

Calibration in accordance with model LS-1 can be performed with an iterative proportional fitting or IPF method. This is the 
method that is applied in Eurostat (2015b) (see section 2.8); see also annex B.5. Statbel applies the more universal Newton-
Raphson method, via the SAS® macro CALMAR2, in particular with a view on extensions of the simple model LS-1. To apply 
CALMAR2, the calibration method or function must be chosen (see annex B). Statbel has chosen the exponential method 
because it corresponds to the IPF method. In order to keep this alignment between Statbel's and Eurostat's method, Statbel 
always chooses the exponential method to apply the LS models developed below (via CALMAR2). 

Table 3 Estimation of global transitions 2018Q3-2018Q4 with model LS-1, after global correction for numerical 
inconsistency 

After applying the classical method to eliminate numerical inconsistency 
ILO status 
2018Q3 

ILO status 2018Q4  Ref. distribution 2018Q3 
Unemployed Employed  Inactive Total (a) (b) (c) 

Unemployed 151,285.33 71,737.93 77,899.39 300,922.65 300,215.88 300,922.65 300,215.88 
Employed   46,349.14 4,559,446.13 190,719.04 4,796,514.31 4,785,248.91 4,796,514.31 4,785,248.91 
Inactive 92,768.19 173,548.90 3,066,568.96 3,332,886.05 3,325,058.21 3,332,886.05 3,344,858.21 
Total 290,402.66 4,804,732.96 3,335,187.38 8,430,323.00 8,410,523.00 8,430,323.00 8,430,323.00 
Ref. 
distribution 
2018Q4 

290,402.66 4,804,732.96 3,335,187.38 8,430,323.00  
  

After applying the Eurostat method to eliminate numerical inconsistency 
ILO status 
2018Q3 

ILO status 2018Q4  Ref. distribution 2018Q3 
Unemployed Employed  Inactive Total (a) (b) (c) 

Unemployed 150,637.85 72,628.75 76,949.28 300,215.88 300,215.88 300,922.65 300,215.88 
Employed   45,528.92 4,553,865.52 185,854.46 4,785,248.91 4,785,248.91 4,796,514.31 4,785,248.91 
Inactive 94,235.89 178,238.69 3,072,383.63 3,344,858.21 3,325,058.21 3,332,886.05 3,344,858.21 
Total 290,402.66 4,804,732.96 3,335,187.38 8,430,323.00 8,410,523.00 8,430,323.00 8,430,323.00 
Ref. 
distribution 
2018Q4 

290,402.66 4,804,732.96 3,335,187.38 8,430,323.00  
  

The grey background marks figures from the originally calibrated BQ and EQ samples that are reproduced exactly: there are 
more of them with the Eurostat method than with the classical method. While the classical method does not reproduce the 
absolute distribution of ILO status in BQ 2018Q3, it does reproduce the relative distribution of ILO status in BQ 2018Q3: 
indeed, in relative terms, the distributions under "Ref. distribution 2018Q3 (a)" and "Ref. distribution 2018Q3 (b)" are exactly 
the same. The Eurostat method, on the other hand, reproduces exactly the absolute figures for the unemployed and 

 
10 We refer to "the Eurostat method" because, according to the Eurostat (2015a) report of the Task Force Flow Statistics, there is a consensus on this method: 
“The favoured approach prioritises consistency with the target quarter, i.e. guarantees that the total longitudinal population is identical to the one of the 
target quarter and the more recent figures of employed, unemployed, and inactive in that quarter are exactly met when adding up the levels of the transition 
matrix. For the initial quarter this would only be the case for employment and unemployment – inactivity would serve as a residual category, i.e. possible 
total population differences between the two quarters would be assigned to the inactive population in the initial quarter.” and “Similar weighting conditions 
enforcing consistency with five of the six marginal values are used by several countries producing flow statistics already.” 



  |19| 

 

employed, but not the relative distribution of ILO status in BQ 2018Q3: in relative terms, the distributions under "Ref. 
distribution 2018Q3 (a)" and "Ref. distribution 2018Q3 (c)" are different. 

The classical and the Eurostat method result in different estimated transition matrices, as shown in Table 3. In absolute terms, 
the difference is largest for the transition Inactive-Inactive (5,814.67 = 3,072,383.63 – 3,066,568.96); in relative terms, the 
differences are less striking (see Table 4): the largest difference is 0.35 percentage points for the transition Unemployed-
Employed . 

Table 4 Estimation of global relative transitions 2018Q3-2018Q4 with model LS-1, after global corrections for numerical 
inconsistency 

ILO status 
2018Q3 

After the classical method After the Eurostat method 
ILO status 2018Q4  ILO status 2018Q4  

Unemployed Employed  Inactive Total Unemployed Employed  Inactive Total 
Unemployed 50.27 23.84 25.89 100.00 50.18 24.19 25.63 100.00 
Employed   0.97 95.06 3.98 100.00 0.95 95.16 3.88 100.00 
Inactive 2.78 5.21 92.01 100.00 2.82 5.33 91.85 100.00 
Total 3.44 56.99 39.56 100.00 3.44 56.99 39.56 100.00 
Ref. 
distribution 
2018Q4 

3.44 56.99 39.56 100.00 3.44 56.99 39.56 100.00 

2.4.2 Calibration to sex-specific distributions of ILO status 

We then set out to calibrate the initial transition matrices for men and women to reference distributions of ILO status by sex. 
Formally, this equates to the application of a calibration model for the LS with the following linear structure: 

 SEX*(STAT1 + STAT2) = SEX*STAT1 + SEX*STAT2 (LS-2) 

For the pair 2018Q3-2018Q4, the initial transition matrices (again using the weights 𝑤𝑤𝑖𝑖
𝐸𝐸𝐵𝐵), together with the original 

reference distributions in the column labelled "Ref. distribution 2018Q3 (a)" and the rows labelled "Ref. distribution 2018Q4", 
are presented in Table 5. We discuss the columns labelled "Ref. distribution 2018Q3 (b)" and "Ref. distribution 2018Q3 (c)" 
below, but we already note here that the sums over sex produce the figures in Table 2, except for the column labelled "Ref. 
distribution 2018Q3 (b)". 

 

Table 5 Initial transition matrices 2018Q3-2018Q4, and reference distributions, by sex 

Men 
ILO status 
2018Q3 

ILO status 2018Q4  Ref. distribution 2018Q3 
Unemployed Employed  Inactive Total (a) (b) (c) 

Unemployed 43,362.60 23,495.56 19,128.01 85,986.16 170,610.00 171,013.58 170,610.00 
Employed   11,590.60 1,230,669.29 46,394.42 1,288,654.31 2,530,132.88 2,536,117.96 2,530,132.88 
Inactive 21,659.78 41,811.68 649,808.94 713,280.40 1,494,108.13 1,497,642.47 1,504,031.13 
Total 76,612.98 1,295,976.53 715,331.37 2,087,920.88 4,194,851.00 4,204,774.00 4,204,774.00 
Ref. 
distribution 
2018Q4 

165,517.27 2,547,516.81 1,491,739.92 4,204,774.00  
  

Women 
ILO status 
2018Q3 

ILO status 2018Q4  Ref. distribution 2018Q3 
Unemployed Employed  Inactive Total (a) (b) (c) 

Unemployed 32,203.59 16,690.32 23,418.78 72,312.69 129,605.88 129,909.54 129,605.88 
Employed   9,298.06 1,073,821.16 47,591.99 1,130,711.21 2,255,116.03 2,260,399.59 2,255,116.03 
Inactive 19,148.45 43,322.65 816,669.12 879,140.22 1,830,950.09 1,835,239.87 1,840,827.09 
Total 60,650.10 1,133,834.13 887,679.89 2,082,164.12 4,215,672.00 4,225,549.00 4,225,549.00 
Ref. 
distribution 
2018Q4 

124,885.40 2,257,216.15 1,843,447.46 4,225,549.00  
  



  |20| 

 

Again, the reference distributions from the BQ must be adjusted so that the system of calibration equations for model LS-2 
is numerically consistent. By sex, we correct the reference distribution of 2018Q3 to the reference distribution of 2018Q4: 

 With the classical method: for men, the distribution under "Ref. distribution 2018Q3 (a)" is multiplied by the factor 
4,204,774.00/4,194,851.00 ≅ 1.002366, and we find the distribution under "Ref. distribution 2018Q3 (b)"; for 
women, the distribution under "Ref. distribution 2018Q3 (a)" is multiplied by the factor 4,225,549.00/4,215,672.00 
≅ 1.002343, and we find the distribution under "Ref. distribution 2018Q3 (b)". 

 With the Eurostat method: for men, the figure for ILO status Inactive in the distribution under "Ref. distribution 
2018Q3 (a)" is modified by the difference 4,204,774.00 – 4,194,851.00 = 9,923.00, and we find the distribution under 
"Ref. distribution 2018Q3 (c)"; for women, the figure for ILO status Inactive in the distribution under "Ref. 
distribution 2018Q3 (a)" is modified by the difference 4,225,549.00 – 4,215,672.00 = 9,877.00, and we find the 
distribution under "Ref. distribution 2018Q3 (c)". 

Calibration model LS-2 can then be applied. This can be done using the IPF method for men and women separately; however, 
Statbel has chosen to use CALMAR2, with the exponential calibration method, as mentioned in the previous sub-section. 

The resulting transition matrices are presented in Table 6, and the resulting relative transition matrices in Table 7. As is the 
case with the calibration with model LS-1, we find that also in the calibration with model LS-2 the classical and the Eurostat 
method to obtain numerical consistency do not produce very large differences in the results. The figures on a grey background 
are figures from the originally calibrated BQ and EQ samples that are reproduced exactly; see also the remarks to Table 3. 
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Table 6 Estimation of sex-specific transitions 2018Q3-2018Q4 with model LS-2, after corrections by sex for numerical 
inconsistency 

After applying the classical method to achieve numerical inconsistency 
Men 
ILO status 
2018Q3 

ILO status 2018Q4  Ref. distribution 2018Q3 
Unemployed Employed  Inactive Total (a) (b) (c) 

Unemployed 90,507.62 43,967.79 36,538.17 171,013.58 170,610.00 171,013.58 170,610.00 
Employed   25,397.17 2,417,684.53 93,036.26 2,536,117.96 2,530,132.88 2,536,117.96 2,530,132.88 
Inactive 49,612.48 85,864.50 1,362,165.49 1,497,642.47 1,494,108.13 1,497,642.47 1,504,031.13 
Total 165,517.27 2,547,516.81 1,491,739.92 4,204,774.00 4,194,851.00 4,204,774.00 4,204,774.00 
Ref. 
distribution 
2018Q4 

165,517.27 2,547,516.81 1,491,739.92 4,204,774.00  
  

Women 
ILO status 
2018Q3 

ILO status 2018Q4  Ref. distribution 2018Q3 
Unemployed Employed  Inactive Total (a) (b) (c) 

Unemployed 61,033.08 28,125.93 40,750.53 129,909.54 129,605.88 129.909,54 129,605.88 
Employed   20,854.76 2,141,538.41 98,006.42 2,260,399.59 2,255,116.03 2,260,399.59 2,255,116.03 
Inactive 42,997.56 87,551.81 1,704,690.50 1,835,239.87 1,830,950.09 1,835,239.87 1,840,827.09 
Total 124,885.40 2,257,216.15 1,843,447.46 4,225,549.00 4,215,672.00 4,225,549.00 4,225,549.00 
Ref. 
distribution 
2018Q4 

124,885.40 2,257,216.15 1,843,447.46 4,225,549.00  
  

After applying the Eurostat method to achieve numerical inconsistency 
Men 
ILO status 
2018Q3 

ILO status 2018Q4  Ref. distribution 2018Q3 
Unemployed Employed  Inactive Total (a) (b) (c) 

Unemployed 90,185.46 44,455.67 35,968.86 170,610.00 170,610.00 171,013.58 170,610.00 
Employed   24,997.79 2,414,666.63 90,468.45 2,530,132.88 2,530,132.88 2,536,117.96 2,530,132.88 
Inactive 50,334.01 88,394.51 1,365,302.60 1,504,031.13 1,494,108.13 1,497,642.47 1,504,031.13 
Total 165,517.27 2,547,516.81 1,491,739.92 4,204,774.00 4,194,851.00 4,204,774.00 4,204,774.00 
Ref. 
distribution 
2018Q4 

165,517.27 2,547,516.81 1,491,739.92 4,204,774.00  
  

Women 
ILO status 
2018Q3 

ILO status 2018Q4  Ref. distribution 2018Q3 
Unemployed Employed  Inactive Total (a) (b) (c) 

Unemployed 60,700.65 28,514.91 40,390.33 129,605.88 129,605.88 129,909.54 129,605.88 
Employed   20,433.80 2,138,981.63 95,700.60 2,255,116.03 2,255,116.03 2,260,399.59 2,255,116.03 
Inactive 43,750.95 89,719.61 1,707,356.53 1,840,827.09 1,830,950.09 1,835,239.87 1,840,827.09 
Total 124,885.40 2,257,216.15 1,843,447.46 4,225,549.00 4,215,672.00 4,225,549.00 4,225,549.00 
Ref. 
distribution 
2018Q4 

124,885.40 2,257,216.15 1,843,447.46 4,225,549.00  
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Table 7 Estimation of sex-specific transition percentages 2018Q3-2018Q4 with model LS-2, after corrections by sex for 
numerical inconsistency 

Men 

ILO status 
2018Q3 

After the classical method After the Eurostat method 
ILO status 2018Q4  ILO status 2018Q4  

Unemployed Employed  Inactive Total Unemployed In work Inactive Total 
Unemployed 50.92 25.71 21.37 100.00 52.86 26.06 21.08 100.00 
Employed   1.00 95.33 3.67 100.00 0.99 95.44 3.58 100.00 
Inactive 3.31 5.73 90.95 100.00 3.35 5.88 90.78 100.00 
Total 3.94 60.59 35.48 100.00 3.94 60.59 35.48 100.00 
Ref. 
distribution 
2018Q4 

3.94 60.59 35.48 100.00 3.94 60.59 35.48 100.00 

Women 

ILO status 
2018Q3 

After the classical method After the Eurostat method 
ILO status 2018Q4  ILO status 2018Q4  

Unemployed Employed  Inactive Total Unemployed Employed  Inactive Total 
Unemployed 46.98 21.65 31.37 100.00 46.83 22.00 31.16 100.00 
Employed   0.92 94.74 4.34 100.00 0.91 94.85 4.24 100.00 
Inactive 2.34 4.77 92.9 100.00 2.38 4.87 92.75 100.00 
Total 2.96 53.42 43.63 100.00 2.96 53.42 43.63 100.00 
Ref. 
distribution 
2018Q4 

2.96 53.42 43.63 100.00 2.96 53.42 43.63 100.00 

After calibration in accordance with model LS-2, the transition matrices and the reference distributions for men and women 
can be added up: this results in the global transition matrices and reference distributions in Table 8. We observe: 

(1) that the 3×3 transition matrices in Table 8 differ relatively little from the 3×3 transition matrices in Table 3, regardless of 
the method used to eliminate numerical inconsistency; 

(2) that corresponding column totals (in the rows labelled "Total") of these matrices in Table 3 and Table 8 are identically 
equal. These totals are also the global reference distribution for the EQ 2018Q4; 

(3) that the reference distributions under the heading "Ref. distribution 2018Q3 (a)" are all equal. This is the original global 
reference distribution for the BQ 2018Q3; 

(4) that the reference distributions under the heading "Ref. distribution 2018Q3 (c)" are all equal. This is the corrected 
reference distribution obtained with the Eurostat method for the BQ 2018Q3;  

(5) that corresponding row totals (in the columns labelled "Total") of these matrices in Table 3 and Table 8 are identically 
equal for the Eurostat method; 

(6) that the reference distributions under the heading "Ref. distribution 2018Q3 (b)" in Table 3 and Table 8 differ. These are 
two versions of the corrected reference distributions for the BQ 2018Q3 obtained by the classical method; 

(7) that corresponding row totals (in the columns labelled "Total") of these matrices in Table 3 and Table 8  are not the same 
for the classical method. 

The observations in points (2) and (3) are obvious: estimated numbers, both in the BQ and EQ, for men and women separately 
in any sub-population (e.g. the unemployed) add up to the estimated total number of persons in that sub-population. The 
observation in point (4) is obvious for the same reason, but also because the adjustment according to the Eurostat method 
only applies to the inactive, and because the adjustments for inactive men and inactive women add up separately to the 
global adjustment for inactive persons. The observation in point (5) is directly linked to the one in point (4). The cause of the 
problem with the classical method mentioned in points (6) and (7) is the application of different correction factors for men 
and women in order to obtain numerical consistency. This is an argument for choosing the Eurostat method. 

The fact that the differences, after applying the classical method, mentioned in points (6) and (7) are small, follows from the 
fact that the global correction factor (1.002354; see the previous section) differs only slightly from the correction factors by 
sex (1.002366 for men and 1.002343 for women; see above). For other breakdowns of the transition matrix than the one by 
sex, larger differences can be expected. 
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Table 8 Estimation of global transitions 2018Q3-2018Q4 with model LS-2, after corrections by sex for numerical 
inconsistency 

After applying the classical method to eliminate numerical inconsistency 
ILO status 
2018Q3 

ILO status 2018Q4  Ref. distribution 2018Q3 
Unemployed Employed  Inactive Total (a) (b) (c) 

Unemployed 151,540.70 72,093.71 77,288.70 300,923.12 300,215.88 300,923.12 300,215.88 
Employed   46,251.92 4,559,222.94 191,042.68 4,796,517.55 4,785,248.91 4,796,517.55 4,785,248.91 
Inactive 92,610.04 173,416.30 3,066,855.99 3,332,882.33 3,325,058.21 3,332,882.33 3,344,858.21 
Total 290,402.66 4,804,732.96 3,335,187.38 8,430,323.00 8,410,523.00 8,430,323.00 8,430,323.00 
Ref. 
distribution 
2018Q4 

290,402.66 4,804,732.96 3,335,187.38 8,430,323.00  
  

After applying the Eurostat method to eliminate numerical inconsistency 
ILO status 
2018Q3 

ILO status 2018Q4  Ref. distribution 2018Q3 
Unemployed Employed  Inactive Total (a) (b) (c) 

Unemployed 150,886.11 72,970.58 76,359.19 300,215.88 300,215.88 300,923.12 300,215.88 
Employed   45,431.59 4,553,648.26 186,169.05 4,785,248.91 4,785,248.91 4,796,517.55 4,785,248.91 
Inactive 94,084.96 178,114.12 3,072,659.13 3,344,858.21 3,325,058.21 3,332,882.33 3,344,858.21 
Total 290,402.66 4,804,732.96 3,335,187.38 8,430,323.00 8,410,523.00 8,430,323.00 8,430,323.00 
Ref. 
distribution 
2018Q4 

290,402.66 4,804,732.96 3,335,187.38 8,430,323.00  
  

 

Note that Model LS-2 can also be formulated as follows: 

 STAT1 + STAT2 + SEX*STAT1 + SEX*STAT2 (LS-2a) 

This makes it clear that model LS-2 not only calibrates to two reference distributions of ILO status by sex, but implicitly also 
to two global reference distributions of ILO status. Model LS-1 calibrates only to two global reference distributions of ILO 
status. The global reference distributions for the BQ 2018Q3 are not the same for model LS-1 and model LS-2 if the classical 
method of correcting for numerical inconsistency is applied. As shown above, this is not directly due to the difference 
between the models LS-1 and LS-2, but to the difference in the prior classical correction for numerical inconsistency. Indeed, 
for both models we have made the minimum necessary correction, i.e. 

 a global correction if model LS-1 – i.e. STAT1 + STAT2 – is applied; 

 a correction by sex if model LS-2 – i.e. SEX*(STAT1 + STAT2) – is applied. 

In order to solve this problem of changes in the global reference distributions for the BQ 2018Q3 when applying the classical 
method for eliminating numerical inconsistencies, we can also apply the correction by sex if transition matrices are calibrated 
according to model LS-1. Calibration according to model LS-1, after applying the classical method by sex, results in the 
estimates and reference distributions in Table 9 (top panel). The estimates of the transitions in Table 9 are very similar to the 
estimates in Table 3; the differences are attributable to the differences in the correction method – global for Table 3, by sex 
for Table 9 – which is mainly reflected in the differences in the corrected reference distribution for the BQ 2018Q3. Note that 
there are no differences if the Eurostat method is applied. 
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Table 9 Estimation of global transitions 2018Q3-2018Q4 with model LS-1, after corrections by sex for numerical 
inconsistency 

After applying the classical method to eliminate numerical inconsistency 
ILO status 
2018Q3 

ILO status 2018Q4  Ref. distribution 2018Q3 
Unemployed Employed  Inactive Total (a) (b) (c) 

Unemployed 151,285.55 71,737.77 77,899.79 300,923.12 300,215.88 300,923.12 300,215.88 
Employed   46,349.33 4,559,447.69 190,720.53 4,796,517.55 4,785,248.91 4,796,517.55 4,785,248.91 
Inactive 92,767.78 173,547.49 3,066,567.06 3,332,882.33 3,325,058.21 3,332,882.33 3,344,858.21 
Total 290,402.66 4,804,732.96 3,335,187.38 8,430,323.00 8,410,523.00 8,430,323.00 8,430,323.00 
Ref. 
distribution 
2018Q4 

290,402.66 4,804,732.96 3,335,187.38 8,430,323.00  
  

After applying the Eurostat method to eliminate numerical inconsistency 
ILO status 
2018Q3 

ILO status 2018Q4  Ref. distribution 2018Q3 
Unemployed Employed  Inactive Total (a) (b) (c) 

Unemployed 150,637.85 72,628.75 76,949.28 300,215.88 300,215.88 300,923.12 300,215.88 
Employed   45,528.92 4,553,865.52 185,854.46 4,785,248.91 4,785,248.91 4,796,517.55 4,785,248.91 
Inactive 94,235.89 178,238.69 3,072,383.63 3,344,858.21 3,325,058.21 3,332,882.33 3,344,858.21 
Total 290,402.66 4,804,732.96 3,335,187.38 8,430,323.00 8,410,523.00 8,430,323.00 8,430,323.00 
Ref. 
distribution 
2018Q4 

290,402.66 4,804,732.96 3,335,187.38 8,430,323.00  
  

2.5 NC methods as calibration models 

2.5.1 Introduction 

Among the NC methods introduced in section 2.4, i.e. the methods to achieve numerical consistency between reference 
distributions from BQ and EQ, we differentiate between two categories of methods: the classical methods, which we will call 
NC-C methods, and the Eurostat methods, which we will call NC-E methods. We illustrated that NC methods are necessary 
before calibration models – the so-called LS (calibration) models – can be applied to the LS. 

In this section, we will elaborate on the NC methods. This is done in the light of the subsequent extension or refinement of 
the LS calibration models: these models will make more detailed NC methods necessary. 

It turns out to be possible and useful to formulate and use the NC methods themselves as calibration models; we then refer 
to NC (calibration) models, and, if necessary, differentiate between NC-C models and NC-E models. On the one hand, this 
allows the calculations for obtaining the desired and necessary numerical consistencies between ILO status distributions from 
the BQ and EQ sample (which are both calibrated) to be made in an efficient and universal manner, so that the (practical) 
statistician, who wants to apply a well-defined LS model, can quickly ensure the necessary numerical consistencies. Among 
other things, this also makes it possible to switch flexibly between LS models, with the aim of comparing multiple LS models 
and choosing a final model. On the other hand, it also makes it possible to present a clear, formal description of the methods 
or models, the comparison of models and the choice of a final model. 

It appears intuitively that NC-C methods can be formulated as calibration models; it is then a calibration of the calibrated BQ 
sample to estimated distributions determined entirely from the calibrated EQ sample. The formulation of NC-E methods as 
calibration models is less obvious. This is a calibration of the calibrated BQ sample to combined aggregate information from 
both the calibrated EQ and the calibrated BQ sample. The resulting NC-E models also have a special characteristic: calibration 
totals can be negative. 

In the following sub-sections, we present the NC methods already applied above as NC calibration models through their linear 
structure, we discuss potential extensions of these NC models, as well as the possibility that calibration totals can be negative 
for the class of NC-E models and the resulting choice of calibration method. The latter is illustrated by an example. The 
mathematical formulation of NC-C and NC-E models is discussed in annex C. 

For the general principles and terminology of calibration models, we refer to annex B. 
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2.5.2 NC-C and NC-E models: variants 

In section 2.4 we have already applied the following NC methods or models to correct for numerical inconsistencies: 

 to use the classical method to adjust the global distribution of ILO status in the BQ to that in the EQ: 

‘1’ (NC-C-1) 

 to use the classical method to adjust the sex-specific distributions of ILO status in the BQ to that in the EQ: 

 SEX (NC-C-2) 

 to use the Eurostat method to adjust the global distribution of ILO status in the BQ to that in the EQ: 

 STAT1 (NC-E-1) 

 to use the Eurostat method to adjust the sex-specific distributions of ILO status in the BQ to that in the EQ: 

 SEX * STAT1 (NC-E-2) 

Model NC-C-1 produces exactly one global correction factor, which is applied to the calibrated weight of each respondent in 
the BQ sample. Similarly, for model NC-E-1 we can state that one global correction factor also results, which however is only 
applied to the calibrated weight of each inactive respondent in the BQ sample; the correction factor for all unemployed and 
employed respondents in the BQ sample is exactly 1. 

Model NC-C-2 produces exactly two correction factors, viz one for each sex; one factor is applied to the calibrated weight of 
each male respondent in the BQ sample, the other to the calibrated weight of each female respondent in the BQ sample. 
Similarly, for model NC-E-2, we can state that two correction factors result, viz one for each sex; one factor is applied to the 
calibrated weight of each inactive male respondent in the BQ sample, the other to the calibrated weight of each inactive 
female respondent in the BQ sample; the correction factor for all unemployed and employed respondents, both male and 
female, in the BQ sample is exactly 1. 

In annex C we show formally and mathematically that not only the NC-C, but also the NC-E methods can be treated as 
calibration models; which, among other things, explains the above notation via the linear structure. This allows for further 
refinement and efficient application – provided relevant software is developed – of NC models by including more background 
variables in these models. This is necessary in view of the extension (see section 2.6) of the calibration models LS-1 and LS-2, 
if transition matrices have to be broken down by other background variables than (just) sex. The following models also offer 
the possibility to correct for numerical inconsistencies between reference distributions: 

 SEX * REG1 * EDU1 * AGE1 * NAT1 (NC-C-3) 

 (SEX * REG1 * EDU1 * AGE1 * NAT1) * STAT1 (NC-E-3) 

Note that NC-C models 1 to 3 and NC-E models 1 to 3 are all "post-stratification" type models. This means that in general 
(unique) correction factors can be calculated separately per cell in the crossing of all involved variables, which does not 
require sophisticated software. For NC-E-3, as for NC-E-1 and NC-E-2, the correction factors for unemployed and employed 
are always 1. 

Model NC-C-3 requires that for each cell in the crossing of the calibration variables involved at least one respondent was 
found in the BQ sample, and that an estimate of the population figure based on the EQ sample can be calculated. If this is 
not the case, then model NC-C-3 must be "simplified", which can be done, for example, by 

(i) regrouping one or more variables; 

(ii) refraining from the full crossing of the calibration variables; 

(iii) leaving aside one or more calibration variables; 

(iv) a combination of (i), (ii) and/or (iii). 
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Some variants of NC-C-3 include, for example: 

 SEX * REG1 * EDU1 * AGE1 * NAT1 (NC-C-3a) 

 SEX + REG1 + EDU1 + AGE1 + NAT1 (NC-C-3b) 

 SEX * AGE1 + REG1 + NAT1 * EDU1 (NC-C-3c) 

 SEX * AGE1 + REG1 + NAT1 * EDU1 (NC-C-3d) 

whereby AGE1 and AGE1 are groupings of AGE1, and NAT1 is a grouping of NAT1 (see section 2.1). 

A possibly necessary simplification of model NC-E-3 can be obtained following the same reasoning, provided that STAT1 is 
not changed, that the simplification is done within the brackets, and that consequently STAT1 always occurs in the crossing 
with each retained term within the brackets: 

 (SEX * REG1 * EDU1 * AGE1 * NAT1) * STAT1 (NC-E-3a) 

 (SEX + REG1 + EDU1 + AGE1 + NAT1) * STAT1 (NC-E-3b) 

 (SEX * AGE1 + REG1 + NAT1 * EDU1) * STAT1 (NC-E-3c) 

 (SEX * AGE1 + REG1 + NAT1 * EDU1) * STAT1 (NC-E-3d) 

Statbel has developed useful SAS® macros to easily apply such models together with CALMAR2; see annex B.6. 

The choice of an NC-C or NC-E model will ultimately depend on the final choice of the LS model: see section 2.6. 

Finally, we note that all NC models are formulated in terms of the background variables and the ILO status in the BQ, which 
follows from the fact that the BQ sample is calibrated, and therefore the calibrated weights 𝑤𝑤𝑖𝑖

𝐵𝐵𝐵𝐵  of the respondents in the 
BQ sample are corrected. 

2.5.3 Possibly negative calibration totals and choice of calibration method 

2.5.3.1 NC-C models 

NC-C models (generally) always lead to positive calibration totals. Indeed, these totals reflect the distribution of the 
background variables – marginal and/or joint – included in the calibration model, and are (in this analysis) the sums of positive 
calibrated weights 𝑤𝑤𝑖𝑖

𝐸𝐸𝐵𝐵  for the respondents 𝑖𝑖 in the EQ sample.11 

As already mentioned, the variants NC-C-1 to 3 and NC-C-3a of NC-C models are "post-stratification" type models. This means 
that the choice of the calibration method (linear, exponential, …) does not affect the solution of the correction factors in the 
system of calibration equations, and that these models are fully determined by their linear structure. With the requirement 
that for the respondents in the sample to be calibrated (in this case in the BQ sample of respondents) with the same values 
for all calibration variables – i.e. a "cell" in the complete crossing of the calibration variables – the same correction factor is 
obtained, this correction factor can be calculated separately for each cell, namely as the ratio of the corresponding calibration 
total to the sum of the initial weights of the units in the cell in the sample to be calibrated. (This also does not require any 
sophisticated software.) 

For variants of NC-C models which are not post-stratification, e.g. NC-C-3b to d, a calibration method must be selected. We 
will not go into any more detail here, because this problem is well known in calibration theory, and because ultimately we 
have not selected an NC-C model, but an NC-E model to solve problems of numerical inconsistency before applying an LS 
model to the LS. 

 
11 In a rare practical case, some calibrated weights 𝑤𝑤𝑖𝑖

𝐸𝐸𝐸𝐸  may be zero, and then calibration totals equal to zero are possible. We ignore this possibility in our 
explanations. 
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2.5.3.2 NC-E models 

In annex C, in sub-section C.3, we explain Statbel's choice of the linear method when applying NC-E models, as these can lead 
to negative calibration totals. We illustrate this in the following sub-section 2.5.4. 

This implies that even for post-stratification NC-E models, such as NC-E-1 to 3 and NC-E-3a, the calibration method must be 
well chosen (in order to apply e.g. CALMAR2). Indeed, negative calibration totals can only be used if one or more negative 
correction factors result from applying an NC-E model. This rules out, for example, the exponential method, as this does not 
allow negative correction factors; the logit method could be used, provided that a negative lower bound for the correction 
factors is applied; etc. Ultimately, we always choose the linear method when applying NC-E models, i.e. also for models such 
as NC-E-3b to d which are not of type post-stratification. The linear method is always applicable when negative calibration 
totals occur (and in that case, negative correction factors are guaranteed to be found as well). Note that even if all calibration 
totals are positive, the linear method may result in negative correction factors. In the context of obtaining numerical 
consistency via NC models, this is not a problem, as these underlying results do not have to be interpreted and published, 
which on the other hand is the case for the results – the transition matrices – of applying LS models. 

As explained above, it is therefore sufficient to present NC-E models through their linear structure, due to the implicit choice 
of the linear calibration method. 

2.5.4 Example: NC-E model with negative calibration totals 

Suppose we want to apply post-stratification model NC-E-3a for the pair of quarters 2018Q3-2018Q4 to achieve numerical 
consistency between BQ and EQ. Table 10 shows all 13 cells 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑏𝑏 in the crossing12 of the six calibration variables SEX, 
REG1, EDU1, AGE1, NAT1 and STAT1 (indexed with respectively 𝑠𝑠, 𝑠𝑠, 𝑠𝑠, 𝑠𝑠, 𝑛𝑛 and 𝑏𝑏) for which a negative calibration total 
𝑇𝑇�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵  is obtained (see annex C.1 for the notations). Of course, this is only possible for 𝑏𝑏 = 3 (inactive persons). For the first 

line in Table 10 the following applies: 

𝑇𝑇�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3
𝐵𝐵𝐵𝐵 = 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3

𝐵𝐵𝐵𝐵 + �𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐸𝐸𝐵𝐵 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵 �
= 2307.35 + (12355.88 − 16446.84)
= 2307.35 − 4090.96
= −1783.61

 

From this, the negative correction factor follows "manually": 

𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3 = 𝑇𝑇�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3
𝐵𝐵𝐵𝐵

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3
𝐵𝐵𝐵𝐵� = −1783.61

2307.35� = −0.77301 

by which the calibrated weights 𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵, for all 𝑖𝑖 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛3, are multiplied. The same negative correction factors (for a total of 

94 respondents in the 13 cells 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛3) are also obtained by applying CALMAR2, using the linear method. 

  

 
12 The full crossing of SEX, REG1, EDU1, AGE1, NAT1 and STAT1 contains up to 648 non-empty cells. In practice, for pair of quarters 2018Q3-2018Q4, there 
are only 585 non-empty cells. Sometimes this is (rather) structural: in age group 65-74 (𝑠𝑠 = 6) there are usually no unemployed people (𝑏𝑏 = 1); sometimes 
this is coincidental (due to relatively small samples), e.g. cell (1,1,2,15-24,2,1) is empty: there are no unemployed male, medium-skilled, 15-24-year-old, 
non-Belgian respondents in Brussels. 
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Table 10 Negative calibration totals under model NC-E-3, resulting in negative correction factors 

SEX 
(𝑠𝑠) 

REG1 
(𝑠𝑠) 

EDU1 
(𝑠𝑠) 

AGE1 
(𝑠𝑠) 

NAT1 
(𝑛𝑛) 

STAT1 
(𝑏𝑏) 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3

𝐵𝐵𝐵𝐵  𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵  𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐸𝐸𝐵𝐵  𝑇𝑇�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3
𝐵𝐵𝐵𝐵  𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3 

1 1 2 35-44 1 3 2307.35 16446.84 12355.88 -1783.61 -0.77301 

1 1 3 35-44 1 3 966.19 22975.53 20015.91 -1993.42 -2.06317 

1 2 3 35-44 1 3 4451.36 167041.99 159310.30 -3280.33 -0.73693 

1 2 3 45-54 2 3 1139.72 16865.93 15383.81 -342.40 -0.30042 

1 2 3 55-64 2 3 514.89 8689.63 5580.80 -2593.93 -5.03780 

1 3 1 25-34 2 3 1134.26 5865.31 3257.67 -1473.38 -1.29898 

1 3 2 45-54 2 3 1703.68 16738.28 9267.72 -5766.89 -3.38496 

1 3 3 25-34 2 3 1452.33 9950.56 8455.55 -42.68 -0.02939 

1 3 3 45-54 1 3 2974.05 77765.55 72537.33 -2254.17 -0.75795 

2 1 2 45-54 1 3 1460.67 15947.48 13249.76 -1237.05 -0.84691 

2 1 2 45-54 2 3 604.60 5927.60 4395.32 -927.68 -1.53438 

2 1 3 35-44 1 3 1876.05 24685.11 20755.26 -2053.80 -1.09475 

2 2 3 35-44 1 3 6220.97 210030.97 197009.83 -6800.18 -1.09311 

Although NC-E-3a is a post-stratification model, due to the negative calibration totals, the calibration method in CALMAR2 
cannot be chosen arbitrarily. For example, if we select the raking ratio method, CALMAR2 does converge, but the calibration 
equations are not satisfied for the 13 cells in Table 10: for these cells CALMAR2 eventually makes the correction factor 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3 
zero (for all other cells the correction factor is correct). 

If model NC-E-3b, i.e. (SEX + REG1 + EDU1 + AGE1 + NAT1) * STAT1, is applied for 2018Q3-2018Q4, there are no negative 
calibration totals: the negative totals 𝑇𝑇�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3

𝐵𝐵𝐵𝐵  for the 13 cells in Table 10 then become part of the positive totals 𝑇𝑇�𝑠𝑠3
𝐵𝐵𝐵𝐵, 𝑇𝑇�𝑠𝑠3

𝐵𝐵𝐵𝐵, 
𝑇𝑇�𝑠𝑠3
𝐵𝐵𝐵𝐵, 𝑇𝑇�𝑠𝑠3

𝐵𝐵𝐵𝐵 and 𝑇𝑇�𝑠𝑠3
𝐵𝐵𝐵𝐵. CALMAR2 then produces, even with the linear method, no negative correction factors 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3. If we use 

the raking ratio method, CALMAR2 still converges; the correction factors for 𝑏𝑏 = 3 differ relatively little from those resulting 
from the linear method; for 𝑏𝑏 = 1 and 2, as expected, all 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  are exactly equal to 1 for both methods. 

Nothing rules out the fact that for other pairs of quarters, some calibration totals for a non-post-stratification NC-E model 
are nevertheless negative. Therefore, we always opt for the linear method when applying an NC-E model. 

2.6 Basic calibration models, with break-down by multiple background variables 

2.6.1 State of play 

In section 2.4 we showed how calibration models can be built if transition matrices only for the total Belgian population and 
by sex must be consistent with the quarterly figures for ILO status: this resulted in model LS-2 for calibration of the LSs. In 
section 2.5 we addressed the underlying problem of inconsistency between the BQ and EQ figures for ILO status. The 
conclusion of these two sections is as follows: 

 if (LS-1) STAT1 + STAT2 is applied with the aim of estimating a global transition matrix for which the marginals are 
consistent with the distribution of ILO status in BQ and EQ, then the calibrated samples for BQ and EQ can be made 
consistent via a (minimal) model (NC-C-1) 1 or (NC-E-1) STAT1; 

 if (LS-2) SEX*(STAT1 + STAT2) is applied with the aim of estimating transition matrices by sex for which the marginals 
are consistent with the distributions of ILO status in BQ and EQ, then the calibrated samples for BQ and EQ can be 
made consistent via a (minimal) model (NC-C-2) SEX or (NC-E-2) SEX*STAT1. 

Note that it is also possible to combine LS-1 with a (non-minimal) model NC-C-2 or NC-E-2: more NC is then realised between 
the quarterly samples than is (at least) necessary to make the global transition matrix consistent with the BQ and EQ 
distribution of ILO status. The realised NC between the quarterly samples is then not fully exploited, and the breakdown of 
the transition matrix by sex does not reflect the NC by sex between the quarterly samples, in the sense that the sex-specific 
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distributions of ILO status are not reproduced. We can state that models NC-C-2 and NC-E-2 are overdetermined to apply LS-
1. 

On the other hand, it is not possible in general to combine LS-2 with NC-C-1 or NC-E-1: the achieved global NC between the 
quarterly samples is not sufficient to successfully apply LS-2. 

An additional conclusion from section 2.4 is that using NC-E models has advantages over using NC-C models. As such, below 
we will only work with NC-E models. The specific technical difficulties that may arise with these models were addressed in 
section 2.5.3. 

2.6.2 Extension of objectives and models 

As of 2021, Statbel set itself the target of publishing transition matrices for various sub-populations: not only for the entire 
Belgian population, but also by sex, by region, by education level, by age group and by nationality category. It is preferable 
that the marginals for each published transition matrix are consistent with previously published quarterly figures for ILO 
status. 

To achieve this objective, the following combination of calibration models can be applied: 

 (SEX + REGt + EDUt + AGEt + NATt) * (STAT1 + STAT2) (LS-3) 

 (SEX * REG1 * EDU1 * AGE1 * NAT1) * STAT1 (NC-E-3a) 

Here, REGt stands for both REG1 and REG2 (i.e. region of domicile of the respondent in BQ and EQ respectively), as domicile 
can change between BQ and EQ; idem for EDUt, AGEt and NATt; see section 2.1. The formulation for LS-3 is a concise way of 
representing the following linear structure: 

 (SEX + REG1 + EDU1 + AGE1 + NAT1) * STAT1 + (SEX + REG2 + EDU2 + AGE2 + NAT2) * STAT2 

since the versions REG1, EDU1, AGE1 and NAT1 of the background variables in the BQ are obviously combined with version 
STAT1 for ILO status in the BQ, and the versions REG2, EDU2, AGE2 and NAT2 of the background variables in the EQ are 
combined with version STAT2 for ILO status in the EQ. Note that – at least in Statbel's experience – to date SEX has not 
changed its value between BQ and EQ for any respondent. 

The term REG1*STAT1 in LS-3 implies that for each region the transition matrix is marginally consistent with the corrected 
estimated distribution of ILO status in BQ obtained via NC-E-3a, and the term REG2*STAT2 in LS-3 implies that for each region 
the transition matrix is marginally consistent with the (unchanged) estimated distribution of ILO status in EQ. Similar for the 
other background variables.13 This is clearly an extension of model LS-2. Model LS-3 therefore allows the objective to be 
achieved; model NC-E-3a provides a way of achieving the required NC between estimated ILO status distributions in BQ and 
EQ. 

Table 11 shows the transition matrix by sex after application of the calibration models LS-3 and NC-E-3a. These results are 
similar to those in the second part of Table 6, which were obtained after applying calibration models (LS-2) SEX*(STAT1 + 
STAT2) and (NC-E-2) SEX*STAT1. The margins of the transition matrices are the same in both tables, apart from rounding 
errors. The transition figures themselves differ, which is due to the difference between models LS-3 and LS-2. The largest 
absolute difference (in absolute value) is 12,732.95 for employed men in both 2018Q3 and 2018Q4; the largest relative 
difference (in absolute value) is 11.29% for men in employment in 2018Q3 and inactive in 2018Q4. The largest difference 
between estimated transition percentages is (in absolute value) 1.9 percentage points, for men who are unemployed in 
2018Q3 and employed in 2018Q4. 

  

 
13 In certain cases, a small perturbation of the LS is necessary to be able to apply an LS model, and thus to achieve the desired consistency. This is further 
discussed and illustrated in annex D. 
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Table 11 Estimation of sex-specific transitions 2018Q3-2018Q4 with model LS-3, after corrections for numerical 
inconsistency with model NC-E-3a 

Men 
ILO status 
2018Q3 

ILO status 2018Q4  Ref. distribution 2018Q3 
Unemployed Employed  Inactive Total (a) (b) (c) 

Unemployed 89,572.22 47,673.26 33,364.51 170,610.00 170,610.00 171,013.58 170,610.00 
Employed   27,518.78 2,401,933.68 100,680.43 2,530,132.89 2,530,132.88 2,536,117.96 2,530,132.88 
Inactive 48,426.27 97,909.88 1,357,694.98 1,504,031.13 1,494,108.13 1,497,642.47 1,504,031.13 
Total 165,517.27 2,547,516.82 1,491,739.93 4,204,774.02 4,194,851.00 4,204,774.00 4,204,774.00 
Ref. 
distribution 
2018Q4 

165,517.27 2,547,516.81 1,491,739.92 4,204,774.00  
  

Women 
ILO status 
2018Q3 

ILO status 2018Q4  Ref. distribution 2018Q3 
Unemployed Employed  Inactive Total (a) (b) (c) 

Unemployed 59,955.47 30,714.59 38,935.82 129,605.88 129,605.88 129,909.54 129,605.88 
Employed   20,804.83 2,134,385.85 99,925.36 2,255,116.03 2,255,116.03 2,260,399.59 2,255,116.03 
Inactive 44,125.10 92,115.72 1,704,586.29 1,840,827.10 1,830,950.09 1,835,239.87 1,840,827.09 
Total 124,885.40 2,257,216.16 1,843,447.47 4,225,549.02 4,215,672.00 4,225,549.00 4,225,549.00 
Ref. 
distribution 
2018Q4 

124,885.40 2,257,216.15 1,843,447.46 4,225,549.00  
  

Model NC-E-3a (if applicable) ensures that the calibration totals in model LS-3 are consistent, so that LS-3 can be applied. The 
post-stratification model NC-E-3a can be applied without sophisticated software but is in a sense overdetermined for 
application of LS-3. Indeed, it not only guarantees the NC between the marginal distributions of ILO status in BQ and EQ by 
sex, by region, … separately, but also for any possible combination of the five background variables. Such a detailed NC is 
only necessary if we would like to apply the following combination of models: 

 (SEX * REG1 * EDU1 * AGE1 * NAT1) * STAT1 (NC-E-3a) 

 (SEX * REGt * EDUt * AGEt * NATt) * (STAT1 + STAT2) (LS-3a) 

which would be necessary if we wanted to produce a transition matrix for each combination of SEX, REG, EDU, AGE and NAT 
for which the marginals are consistent with the previously published quarterly figures for ILO status. However, for the pair 
2018Q3-2018Q4, model LS-3a is not applicable, in se because the LS is too small; specifically: 

 for the crossing SEX * REG1 * EDU1 * AGE1 * NAT1 * STAT1 there are 37 cells empty in the LS, but not in the BQ 
sample; 

 for the crossing SEX * REG2 * EDU2 * AGE2 * NAT2 * STAT2 there are 45 cells empty in the LS, but not in the EQ 
sample. 

The following model combination is sufficient to achieve the originally stated objective: 

 (SEX + REG1 + EDU1 + AGE1 + NAT1) * STAT1 (NC-E-3b) 

 (SEX + REGt + EDUt + AGEt + NATt) * (STAT1 + STAT2) (LS-3) 

because for model LS-3, NC-E-3b is the minimum model to realise NC between BQ and EQ. This model combination also leads 
to Table 11, which consequently shows that NC-E-3a is overdetermined for LS-3. 

We will add one more term to LS-3, in order to arrive at a final model combination that will be applied to obtain the published 
transition matrices. This is addressed in the following section 2.7. 

2.7 Final calibration model, with addition of (a) structure term(s) 

Although the objectives are fully achieved with model LS-3, we add another term SEX*AGE2*REG2 to arrive at model LS-4: 
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 (SEX * REG1 * EDU1 * AGE1 * NAT1) * STAT1 (NC-E-3a) 

 SEX*AGE2*REG2 + (SEX + REGt + EDUt + AGEt + NATt) * (STAT1 + STAT2) (LS-4) 

Adding the term SEX*AGE2*REG2 does not change the choice of the NC-E model (we will discuss below why NC-E-3a, and 
not NC-E-3b, was ultimately chosen). It is ultimately this model combination that is used by Statbel to produce the transition 
matrices. 

Table 12 shows the transition matrix by sex after application of the calibration models LS-4 and NC-E-3a.14 These results are 
similar to those in Table 11, which were obtained after applying calibration models LS-3 and NC-E-3a. The margins of the 
transition matrices are the same in both tables, apart from rounding errors. The transition figures themselves differ relatively 
little: the largest absolute difference (in absolute value) is 932.35 for men who are inactive in both 2018Q3 and 2018Q4; the 
largest relative difference (in absolute value) is 1.25% for men who are unemployed in 2018Q3 and inactive in 2018Q4. The 
largest difference between estimated transition probabilities is (in absolute value) 0.3 percentage points, for men who are 
unemployed in both 2018T3 and 2018Q4. The added term SEX*AGE2*REG2 in LS-4 compared to LS-3 therefore only has a 
limited effect on the transition matrices per sex. 

Table 12 Estimation of sex-specific transitions 2018Q3-2018Q4 with model LS-4, after corrections for numerical 
inconsistency with model NC-E-3a 

Men 
ILO status 
2018Q3 

ILO status 2018Q4  Ref. distribution 2018Q3 
Unemployed Employed  Inactive Total (a) (b) (c) 

Unemployed 90,155.76 47,506.15 32,948.09 170,610.00 170,610.00 171,013.58 170,610.00 
Employed   27,368.15 2,402,600.26 100,164.51 2,530,132.92 2,530,132.88 2,536,117.96 2,530,132.88 
Inactive 47,993.36 97,410.44 1,358,627.33 1,504,031.14 1,494,108.13 1,497,642.47 1,504,031.13 
Total 165,517.27 2,547,516.85 1,491,739.93 4,204,774.05 4,194,851.00 4,204,774.00 4,204,774.00 
Ref. distribution 
2018Q4 165,517.27 2,547,516.81 1,491,739.92 4,204,774.00    

Women 
ILO status 
2018Q3 

ILO status 2018Q4  Ref. distribution 2018Q3 
Unemployed Employed  Inactive Total (a) (b) (c) 

Unemployed 60,299.26 30,824.17 38,482.45 129,605.89 129,605.88 129,909.54 129,605.88 
Employed   20,841.99 2,133,679.02 100,595.03 2,255,116.05 2,255,116.03 2,260,399.59 2,255,116.03 
Inactive 43,744.14 92,712.98 1,704,370.01 1,840,827.13 1,830,950.09 1,835,239.87 1,840,827.09 
Total 124,885.40 2,257,216.17 1,843,447.49 4,225,549.06 4,215,672.00 4,225,549.00 4,225,549.00 
Ref. distribution 
2018Q4 124,885.40 2,257,216.15 1,843,447.46 4,225,549.00    

Why then use the extra term? The meaning of the term SEX*AGE2*REG2 is that the composition or structure according to 
the variables SEX, AGE2 and REG2 of the population of 15-74-year-olds, as estimated in the EQ, is introduced in the calibrated 
LS. Of course, the term (SEX + REG2 + EDU2 + AGE2 + NAT2) * STAT2 already does this to a certain extent, as it implies, inter 
alia, the terms SEX, AGE2 and REG2, which introduces the marginal distributions of these variables in the LS. The term 
SEX*AGE2*REG2 further adds the joint distributions (two by two, and for all three variables together). 

The extra term – which we will call a structure term – is inspired by the techniques described by Eurostat (2015b); we will 
come back to this in section 2.8. 

After applying any model combination, the transition matrices can be broken down in many ways. For example, we can break 
it down by province (NUTS2 level; variable PROV2 similarly to REG2) even if only region (NUTS1 level; variable REG2) is in the 
model combination (e.g. LS-4 with NC-E-3a), or even if region is not in the model combination (e.g. LS-2 with NC-E-2). Another 
example: after applying model combination LS-4 with NC-E-3a – the final model currently used by Statbel for publications – 
transition matrices can be made for any combination of SEX and AGE2. The marginals in these transition matrices will 
generally not be consistent with the quarterly figures, but the structure term may make the marginals more consistent with 
the quarterly figures. The ideal method of making the marginals in the cells of the crossing SEX×AGE2 consistent with the 

 
14 Like model LS-3, model LS-4 (for 2018Q3-2018Q4) also requires perturbation of the LS. See footnote 13 and annex D. 
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quarterly figures is to extend model LS-4 to SEX*AGE2*REG2 + (SEX + REGt + EDUt + AGEt + NATt + SEX*AGEt) * (STAT1 + 
STAT2); however, such extensions can lead to problems due to a too small LS, as illustrated by the unsuccessful application 
of model combination LS-3a with NC-E-3a. 

Of course, SEX*AGE2*REG2 is not the only potentially useful structure term; other examples include SEX*AGE2, SEX*REG2, 
AGE2*REG2, REG2*NAT2, PROV2, SEX*PROV2, PROV2*AGE2*NAT2, etc. Statbel's final choice for structure term 
SEX*AGE2*REG2 is quite arbitrary; further study may result in "more optimal" structure terms. 

Another possible effect of a structure term is the reduction of variance, i.e. an increase in the precision of the estimated 
transition figures. This aspect deserves further investigation and goes hand in hand with determining "optimal" structure 
terms, and consequently determining "optimal" LS models for producing transition matrices. 

Finally, we note that Statbel, together with LS-4, did not choose the more simple but adequate model NC-E-3b, but rather 
the more detailed model NC-E-3a, to estimate and publish the transition matrices, because at the time of the production and 
publication of the transition matrices, the software (in SAS®, with CALMAR2 and Statbel's own generic macros) for applying 
models such as NC-E-3b was not yet ready. The transition matrices in Table 12 can be found on the Statbel website in the 
downloadable Excel file LFS_TRANSITION_ENG_QQ_P.xlsx, in worksheet 2018Q3-Q4, lines 16 to 28. The same Excel file 
contains numerous other transition matrices: for other pairs of quarters, and for other breakdowns. A similar Excel file 
LFS_TRANSITION_ENG_JQ_P.xlsx contains the quarter-specific annual transitions, which are also estimated using the model 
combination NC-E-3a and LS-4. 

2.8 Eurostat's step-by-step approach, and comparison with Statbel's method 

In this section we discuss Eurostat's methodology (Eurostat, 2015b). This is merely a brief discussion using the above 
terminology, to make the similarities/differences with Statbel's final model clear. 

Using the notation of this analysis (see annex C.1 and section 2.5.4) Eurostat (2015b) uses the background variables 

 SEX (“sex”), for which we indicate the categories with the index 𝑠𝑠, and 

 AGE2 (“10-year age group”, with categories 15-24, 25-34, … 65-74), for which we indicate the categories with the 
index 𝑠𝑠� (we used index 𝑠𝑠 for the categories of variable AGE1), 

and the study variables 

 STAT1 (ILO status in the BQ), for which we indicate the categories with the index 𝑏𝑏, and 

 STAT2 (ILO status in the EQ), for which we indicate the categories with the index 𝑏𝑏�. 

For a given pair of quarters, all persons 𝑖𝑖 in the LS have an initial weight 𝑤𝑤𝑖𝑖
𝐸𝐸𝐵𝐵 . From this, Eurostat (2015b) calculates an initial 

transition matrix for each of the 12 combinations 𝑠𝑠𝑠𝑠� of SEX and AGE2. Each of these transition matrices is corrected for the 
estimated distribution of ILO status in the EQ (STAT2) for the sub-population 𝑠𝑠𝑠𝑠�. This first correction corresponds in our 
modelling approach to a calibration of the full LS according to the post-stratification model 

 (SEX * AGE2) * STAT2 (LS-0a) 

We can denote the correction factors as 𝑐𝑐𝑠𝑠𝑠𝑠�𝑠𝑠� ; the result of this first correction is a new weight 𝑐𝑐𝑠𝑠𝑠𝑠�𝑠𝑠�𝑤𝑤𝑖𝑖
𝐸𝐸𝐵𝐵  for each person 𝑖𝑖 in 

the LS. This results in an adjusted transition matrix for each combination 𝑠𝑠𝑠𝑠�, based on the new weights 𝑐𝑐𝑠𝑠𝑠𝑠�𝑠𝑠�𝑤𝑤𝑖𝑖
𝐸𝐸𝐵𝐵. 

A second correction of the LS is prepared by Eurostat (2015b) as follows: 

 The adjusted transition matrices are summed across age groups 𝑠𝑠� for each sex 𝑠𝑠, which produces two sex-specific 
adjusted transition matrices. 

 For each sex 𝑠𝑠 and for the full age group 15-74, the estimated distribution of ILO status in the BQ (STAT1) is adjusted 
to be consistent with the distribution of ILO status in the EQ (STAT2). This is done by adjusting (by sex 𝑠𝑠) the 
estimated number of inactive persons in the BQ so that (by sex 𝑠𝑠) the sums of the estimated numbers of employed, 
unemployed and inactive persons in the BQ and EQ are equal. In our modelling approach, this adjustment 
corresponds to a calibration of the BQ sample of 15-74-year-olds, each having a weight 𝑤𝑤𝑖𝑖

𝐵𝐵𝐵𝐵 , according to the NC-E 
model 

https://statbel.fgov.be/sites/default/files/files/documents/Werk%20%26%20opleiding/9.2%20Arbeidsmarkt/9.2.0%20Emploi%20et%20ch%C3%B4mage/LFS_TRANSITION_ENG_QQ_P.xlsx
https://statbel.fgov.be/sites/default/files/files/documents/Werk%20%26%20opleiding/9.2%20Arbeidsmarkt/9.2.0%20Emploi%20et%20ch%C3%B4mage/LFS_TRANSITION_ENG_JQ_P.xlsx
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 SEX * STAT1 (NC-E-0) 

For each person 𝑖𝑖 in the BQ sample this produces a new weight 𝑔𝑔𝑠𝑠𝑠𝑠𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵. Note that the correction factors 𝑔𝑔𝑠𝑠𝑠𝑠 are equal to 1 

for 𝑏𝑏 = 1 (employed) and 𝑏𝑏 = 2 (unemployed). Note too that model NC-E-0 is the same as model NC-E-2 (see section 2.5.2). 

Eurostat (2015b) then uses the IPF method to correct the two sex-specific adjusted transition matrices to the corresponding 
distributions (by sex 𝑠𝑠) of ILO status in BQ and EQ. This second correction corresponds in our modelling approach to a 
calibration of the full LS according to the model 

 SEX * (STAT1 + STAT2) (LS-0b) 

We denote the correction factors as �́�𝑐𝑠𝑠𝑠𝑠𝑠𝑠� ; the result of this second correction is the final weight �́�𝑐𝑠𝑠𝑠𝑠𝑠𝑠�𝑐𝑐𝑠𝑠𝑠𝑠�𝑠𝑠�𝑤𝑤𝑖𝑖
𝐸𝐸𝐵𝐵  for each person 

𝑖𝑖 in the LS. Note that model LS-0b is the same as model LS-2 (see section 2.4.2). 

It is noteworthy that in Eurostat's method the processing of the BQ sample according to model NC-E-0 can come before the 
two successive corrections of transition matrices without any problem, we can therefore conclude that Eurostat's method in 
Statbel's approach corresponds to 

 applying model NC-E-0 (or NC-E-2) to the BQ sample, with initial weight 𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵; 

 then applying model LS-0a to the LS, with initial weights 𝑤𝑤𝑖𝑖
𝐸𝐸𝐵𝐵 , which results in weights 𝑐𝑐𝑠𝑠𝑠𝑠�𝑠𝑠�𝑤𝑤𝑖𝑖

𝐸𝐸𝐵𝐵; 

 then applying model LS-0b (or LS-2) to the LS, with new initial weights 𝑐𝑐𝑠𝑠𝑠𝑠�𝑠𝑠�𝑤𝑤𝑖𝑖
𝐸𝐸𝐵𝐵, which results in final weights 

�́�𝑐𝑠𝑠𝑠𝑠𝑠𝑠�𝑐𝑐𝑠𝑠𝑠𝑠�𝑠𝑠�𝑤𝑤𝑖𝑖
𝐸𝐸𝐵𝐵; 

The result is the LS sample with calibrated weights �́�𝑐𝑠𝑠𝑠𝑠𝑠𝑠�𝑐𝑐𝑠𝑠𝑠𝑠�𝑠𝑠�𝑤𝑤𝑖𝑖
𝐸𝐸𝐵𝐵, with which final transition matrices can be calculated. 

Note that the calculations for the models NC-E-0, LS-0a and LS-0b do not require sophisticated software: NC-E-0 and LS-0a 
are post-stratification models for which a correction factor per cell in the crossing of the variables in question can be 
calculated, and LS-0b can be solved with IPF (as usual per value of SEX in two dimensions in accordance with the terms STAT1 
and STAT2, or simultaneously for men and women in two dimensions in accordance with the terms SEX*STAT1 and 
SEX*STAT2). 

In this way, the LS is calibrated in two steps. There is in fact no reason for this, so a valid alternative to Eurostat's method can 
be formulated as follows: 

 applying model NC-E-0 (or NC-E-2) to the BQ sample, with initial weight 𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵; 

 then applying model LS-0c to the LS, with initial weights 𝑤𝑤𝑖𝑖
𝐸𝐸𝐵𝐵 , in which LC-0c achieves the objectives of LS-0a and LS-

0b simultaneously: 

 (SEX * AGE2) * STAT2 + SEX * (STAT1 + STAT2) (LS-0c) 

Model LS-0c transforms the initial weights 𝑤𝑤𝑖𝑖
𝐸𝐸𝐵𝐵  in calibrated weights 𝑐𝑐�̅�𝑠𝑠𝑠�𝑠𝑠𝑠𝑠�𝑤𝑤𝑖𝑖

𝐸𝐸𝐵𝐵 , say. 

One disadvantage of the step-by-step application of models LS-0a and LS-0b is that the consistency achieved with LS-0a is 
generally cancelled out by the application of LS-0b. This means that with the correction factors �́�𝑐𝑠𝑠𝑠𝑠𝑠𝑠�𝑐𝑐𝑠𝑠𝑠𝑠�𝑠𝑠�  the calibration 
equations of model LS-0a are generally not satisfied. The advantage of model LS-0c, with correction factors 𝑐𝑐�̅�𝑠𝑠𝑠�𝑠𝑠𝑠𝑠� , is that all 
the calibration equations, both those resulting from model LS-0a and those resulting from model LS-0b, are simultaneously 
satisfied. The correction factors �́�𝑐𝑠𝑠𝑠𝑠𝑠𝑠�𝑐𝑐𝑠𝑠𝑠𝑠�𝑠𝑠�  and 𝑐𝑐�̅�𝑠𝑠𝑠�𝑠𝑠𝑠𝑠�  are therefore generally not equal. 

A technical disadvantage of model LS-0c is that a post-stratification technique clearly cannot be used to apply this model. IPF, 
on the other hand, can be applied in principle, but not (as is usual) in two dimensions, but in three dimensions – corresponding 
to the three terms SEX*AGE2*STAT2, SEX*STAT1 and SEX*STAT2 – which requires a more advanced implementation of the 
IPF method. This disadvantage can easily be worked around by using a generic macro such as CALMAR2, which is written in 
SAS® code. In CALMAR2, the IPF algorithm cannot be chosen: all calibration models that can be applied by CALMAR2 are 
solved by a highly universal numerical algorithm based on the Newton-Raphson method. 

To apply model LS-0c via CALMAR2, a calibration method needs to be chosen. Since the IPF algorithm leads to the same 
solution of calibration models as the universal algorithm in CALMAR2 when the exponential method (i.e. a multiplicative 
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calibration function) is used, using the exponential method is the obvious choice. This motivated the decision to solve all LS 
models in this analysis with the exponential method. This choice is therefore in line with the Eurostat method. 

Finally, we can compare LS-0c with Statbel's final model LS-4. In the first instance, we ignore the variables in LS-4 that do not 
occur in model LS-0c, i.e. we reduce LS-4 to the following simpler model: 

 SEX*AGE2 + (SEX + AGEt) * (STAT1 + STAT2) (LS-4a) 

To understand the similarities and differences between LS-4a and LS-0c, we rewrite15 LS-0c as: 

 [ SEX*AGE2 + SEX*AGE2*STAT2 ] + [ AGE2*STAT2 + SEX*(STAT1 + STAT2) ] (LS-0c) 

or as: 

 [ SEX*AGE2*STAT2 ] + [ AGE2*STAT2 + SEX*(STAT1 + STAT2) ] (LS-0c) 

The difference between the second part [ AGE2*STAT2 + SEX*(STAT1 + STAT2) ] in LS-0c and the second part (SEX + AGEt) * 
(STAT1 + STAT2) in LS-4a is a term AGE1*STAT1. Adding this term AGE1*STAT1 in LS-0c would therefore extend the original 
objective of Eurostat's illustrative paper in a natural way: transition matrices would not only be consistent for men and 
women with results from BQ and EQ, but also by age group. 

The difference between the first part [ SEX*AGE2 + SEX*AGE2*STAT2 ] in LS-0c and the first part SEX*AGE2 in LS-4a is – 
formally – the term SEX*AGE2*STAT2, but because SEX*AGE2 is implied by SEX*AGE2*STAT2, the actual difference consists 
of (1°) the term STAT2, (2°) the two-way interactions SEX×STAT2 and AGE2×STAT2 and (3°) the three-way interaction 
SEX×AGE2×STAT2. Moreover, it is the case that the terms STAT2, SEX×STAT2 and AGE2×STAT2 are implied by the second part 
in LS-4a, or by the extended second part of LS-0c as suggested in the previous section. 

An alternative way of comparing LS-4a and LS-0c with regard to the respective first parts, is to state that the structure term 
SEX*AGE2 in LS-4a is extended to the structure term SEX*AGE2*STAT2 in LS-0c. This appears to be a "large" extension, but, 
taking into account also the second part in LS-0c, we find that components of SEX*AGE2*STAT2 are already part of the second 
part of the suggested extension of LS-0c: the terms STAT2, SEX×STAT2 and AGE2×STAT2 are implied by both parts. In other 
words, there is an "overlap" between the first and the second part in (the extended version of) LS-0c. 

Note that LS-4a, unlike LS-0c, is somewhat easier to interpret: the second part allows the consistency objectives regarding 
various distributions of the study variables STAT1 and STAT2 to be met, while the first part focuses only on the structure of 
the calibrated EQ sample (i.e. an estimated structure of the population) via background variables. And the extension of LS-
4a to LS-4 is therefore somewhat more transparent: extension of the second part to achieve more coherence, extension of 
the first part to incorporate more structure of the (estimated) population of 15-74-year-olds in the EQ into the calibrated LS. 

2.9 Estimating annual transitions 

In sections 2.1 to 2.7 calibration models were developed for estimating quarterly transitions and quarter-specific annual 
transitions. Both types of transitions can be estimated using the same methodology, as both involve the calibration of an LS 
which is the intersection of two quarterly samples. Except if influenced by the start-up phase of the panel, these LSs all have 
the same structure: they consist of respondents from two RGs, for which each time exactly one transition is observed. This 
can be derived from Table B 1 for the quarterly transitions and from Table B 2 for the quarter-specific annual transitions. 

Using scheme 1 in Termote & Depickere (2018) – if we were to draw up a similar table for the global annual transitions, which 
assumes annual samples for two consecutive years (e.g. 2018 and 2019), and for which the LS is the intersection of those 
annual samples, then that table would look like this: 

  

 
15 Rewriting or reformulating the linear structures of calibration models is based on the hierarchical nature of these structures: a term such as e.g. A*B*C 
(for category variables A, B and C) always implies the terms A*B, A*C, B*C, A, B, C and 1; see annex B.4.1. 
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Begin year End year RGs in the 
overlap 

1st RG 2nd RG 3rd RG 4th RG 5th RG 
Observations from waves… 

2018 2019 10, 11, 12, 13, 14 2 and 4 1 and 3 
2 and 4 

1 and 3 
2 and 4 

1 and 3 
2 and 4 1 and 3 

The LS for 2018-2019 would involve five (consecutive) RGs, which do not all provide data in the same way: for each 
respondent from the first and fifth RG exactly one transition is observed (between W2 and W4, or between W1 and W3), but 
for each respondent from the other three RGs two transitions are observed (between W1 and W3, and between W2 and 
W4). Such two transitions, i.e. two "observations", for the same respondent cannot be considered independent, which goes 
against the common application of calibration techniques, in which independence between "observations" is assumed. 

Because of this problem, annual transitions are simply estimated as an unweighted average of the estimated quarter-specific 
annual transitions. 

Note that the four estimated quarter-specific annual transitions are not independent statistics (by analogy with the non-
independence of observations in the LS for estimating annual transitions discussed above). Estimating the annual transitions 
as an average does not pose a problem. Variance estimation for annual transitions, however, would have to be realised with 
specially developed techniques that take into account two observations for a large part of the respondents, but that is beyond 
the scope of this analysis. 

Estimating annual transitions as an unweighted average of quarter-specific annual transitions is analogous to estimating 
annual key indicators (such as number of unemployed, number of employed, etc.) as unweighted averages of quarterly key 
indicators. The method of variance estimation for annual key indicators was also tuned to the fact that the majority of 
respondents contribute to two quarterly key indicators. 
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3 Published figures 

From 2021 onwards, Statbel publishes each quarter – i.e. the current quarter – the transition matrices for the current quarter 
compared to the previous quarter (i.e. the latest quarterly transitions, denoted by QQ in the name of the downloadable Excel 
files), and for the current quarter compared to the same quarter one year earlier (i.e. the most recent quarter-specific annual 
transitions, denoted by JQ). Annually, Statbel will also publish the annual transitions (i.e. the averages of the four most recent 
quarter-specific annual transitions, denoted by JJ). Each published transition matrix is accompanied by a matrix of transition 
rates (or percentages) and a matrix of respondent sample sizes (or unweighted transitions). 

For each of the three types (QQ, JQ and JJ) of transition figures, Statbel publishes the transitions for the entire population of 
15-74-year-olds, as well as breakdowns by sex, region, age (younger than 30 vs. at least 30 years), education level (low, 
medium, high) and nationality (Belgian vs. non-Belgian). Below, we discuss the results for each of the three types of 
transitions and some aspects that should be considered when using and interpreting them. 

Since January 2021, Statbel publishes the quarterly transitions (type QQ) and the quarter-specific annual transitions (type JQ) 
together with the quarterly results for key indicators. For these transitions, Statbel also provides the time series: from 
2017Q1-2017Q2 for type QQ and from 2017Q1-2018Q1 for type JQ. Statbel also publishes the annual transitions (type JJ) 
since 2021. In the future, these will be published together with the annual figures, i.e. at the end of March. 

3.1 Quarterly transitions: transitions between consecutive quarters 

Below we briefly explain which figures are published on transitions between consecutive quarters and how these can be 
interpreted. As was the case in chapter 2 we use the pair of quarters 2018Q3-2018Q4 for illustration purposes. The published 
quarterly transitions for this pair can be found in worksheet 2018Q3-Q4 in the downloadable Excel file 
LFS_TRANSITION_ENG_QQ_P.xlsx; the figures for the entire population of 15-74-year-olds are compiled below in Table 13. 
The figures in panel A of this table are the final estimates of the transitions for the pair of quarters referred to. Note that 
these are the rounded sums of the estimates by sex, as presented in Table 12, e.g. 90,155.76 + 60,299.26 = 150,455.02 in 
Table 12 becomes 150,455 in Table 13. 

The transitions in panel A of Table 13 indicate how many people are estimated to have made a given transition. For example, 
we see that 48,210 people changed from employed to unemployed. They lost their job, which they still had in 2018Q3, but 
are actively looking for another job in 2018Q4. The table also shows, for example, how many people who were previously 
unemployed or inactive found a job: 78,330 unemployed and 190,123 inactive in 2018Q3 found work in 2018Q4. 

The totals for the end quarter 2018Q4, i.e. the estimated absolute distribution of ILO status in 2018Q4 (which is not shown 
in Table 13), are identical to those resulting from calibration of the quarterly sample for 2018Q4. The totals for the begin 
quarter 2018Q3, for unemployed (300,216) and employed (4,785,249), are identical to those resulting from calibration of the 
quarterly sample for 2018Q3; for inactive persons, the total (3,344,858) differs from the result of this calibration (3,325,058), 
as a result of the necessary correction for numerical inconsistency between BQ and EQ.16 

Table 13 also shows the transition percentages in panel B. These are row percentages calculated from the transition matrix 
in panel A (see section 1.5 for the reason for the (arbitrary) choice of row percentages in this analysis). In the diagonal from 
top left to bottom right we find the percentages of people who did not make a transition, who are therefore stable in their 
status. For example, from 2018Q3 to 2018Q4 94.8% remain employed on the labour market (i.e. 4,536,279 of 4,785,249 
people). The cells not on the diagonal contain figures for people who did make a transition: for example, 26.1% change from 
unemployed in 2018Q3 to employed in 2018Q4 (i.e. 78,330 of 300,216 people). Furthermore, of those who were inactive in 
2018Q3, 91.6% are still inactive, 2.7% are unemployed and 5.7% are employed in 2018Q4. 

  

 
16 For an overview of tables published by Eurostat, see https://ec.europa.eu/eurostat/web/lfs/data/database; the tables LFSQ_UGAN, LFSQ_EGAN and 
LFSQ_IGAN allow e.g. the totals 300,216, 4,785,249 and 3,325,058 (for 2018Q3) to be found in thousands, i.e. 300.2 (x1000), 4,785.2 (x1000), and 3,325.1 
(x1000). 

https://statbel.fgov.be/sites/default/files/files/documents/Werk%20%26%20opleiding/9.2%20Arbeidsmarkt/9.2.0%20Emploi%20et%20ch%C3%B4mage/LFS_TRANSITION_ENG_QQ_P.xlsx
https://ec.europa.eu/eurostat/web/lfs/data/database
https://ec.europa.eu/eurostat/databrowser/view/LFSQ_UGAN/default/table?lang=en
https://ec.europa.eu/eurostat/databrowser/view/lfsq_egan/default/table?lang=en
https://ec.europa.eu/eurostat/databrowser/view/lfsq_igan/default/table?lang=en
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Table 13 Published quarterly transition matrix for 2018Q3-2018Q4, with corresponding transition percentage and sample 
size matrices – see publication LFS_TRANSITION_ENG_QQ_P.xlsx 

A. Transitions 

2018Q4 
2018Q3 

Unemployed 
current Q 

Employed 
current Q 

Inactive 
current Q 

Total 

Unemployed previous Q 150,455 78,330 71,431 300,216 
Employed previous Q 48,210 4,536,279 200,760 4,785,249 
Inactive previous Q 91,738 190,123 3,062,997 3,344,858 

B. Transition percentages 

2018Q4 
2018Q3 

Unemployed 
current Q 

Employed 
current Q 

Inactive 
current Q 

Total 

Unemployed previous Q 50.1% 26.1% 23.8% 100.0% 
Employed previous Q 1.0% 94.8% 4.2% 100.0% 
Inactive previous Q 2.7% 5.7% 91.6% 100.0% 

C. Unweighted transitions (respondent sample sizes) 

2018Q4 
2018Q3 

Unemployed 
current Q 

Employed 
current Q 

Inactive 
current Q 

Total 

Unemployed previous Q 224 120 130 474 
Employed previous Q 57 7,102 296 7,455 
Inactive previous Q 93 239 5,249 5,581 

Finally, in panel C of Table 13 we find the unweighted number of respondents for each of the nine possible transitions, i.e. 
the respondent sample sizes. Note that these numbers are also presented in Table 1. As a whole, these are less interesting 
to interpret directly, but they are important as an indication of the precision of the figures in panel A and panel B: the smaller 
the unweighted number of respondents, the less precise and reliable the corresponding estimates for absolute transition 
figures in panel A and relative transition figures in panel B.17 This is important when interpreting the figures, and especially 
when we consider fluctuations in time series. They also indicate that breakdowns by various background variables could 
become problematic, as illustrated in the following sections for breakdowns by nationality and age group. 

Breakdown by nationality category  

One example where the respondent numbers quickly become small is when broken down by nationality. As indicated in 
section 2.1 the original intention was to make the transition matrices consistent with quarterly estimates of ILO status for 
three nationality categories, namely BE, EU and Nt-EU. Table 14 shows a low representation of non-Belgians (EU and Nt-EU 
combined) in the LS for 2018Q3-2018Q4: the six non-diagonal cells each contain fewer than 30 respondents, making the 
estimated transitions and transition percentages in these six cells unreliable. A further differentiation between EU and Nt-EU 
would therefore not provide more useful results. 

Table 14 Distribution of the longitudinal sub-sample 2018Q3-2018Q4 of non-Belgians (EU and Nt-EU combined) according 
to ILO status in begin and end quarter 

2018Q4 
2018Q3 

Unemployed 
current Q 

Employed 
current Q 

Inactive 
current Q 

Total 

Unemployed previous Q 65 14 24 103 
Employed previous Q 8 777 28 813 
Inactive previous Q 22 27 466 515 

What is illustrated here for 2018Q3-2018Q4 applies to most, if not all, pairs of quarters (see the various worksheets in 
LFS_TRANSITION_ENG_QQ_P.xlsx). That is the reason why in the calibration models we have only retained the dichotomy BE 
versus Nt-BE (i.e. NAT1 and NAT2). 

 
17 Variance estimation for transition figures and percentages has not yet been realised at the time of writing this analysis. 

https://statbel.fgov.be/sites/default/files/files/documents/Werk%20%26%20opleiding/9.2%20Arbeidsmarkt/9.2.0%20Emploi%20et%20ch%C3%B4mage/LFS_TRANSITION_ENG_QQ_P.xlsx
https://statbel.fgov.be/sites/default/files/files/documents/Werk%20%26%20opleiding/9.2%20Arbeidsmarkt/9.2.0%20Emploi%20et%20ch%C3%B4mage/LFS_TRANSITION_ENG_QQ_P.xlsx
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Breakdown by age group 

The breakdown of transition matrices by age group poses a problem similar to that discussed above for the breakdown by 
nationality category. As indicated in section 2.1 10-year age groups 15-24, 25-34, 35-44, 45-54, 55-64, 65-74 (for the 
population of 15-74-year-olds) were used in the calibrations for estimating transitions. However, especially for the last two 
categories, the respondent numbers according to ILO status in BQ and EQ are so small – as shown in Table 15 – that this split 
was not retained in the publications. 

Table 15 Distribution of the longitudinal sub-samples 2018Q3-2018Q4 of 55-64- and 65-74-year-olds according to ILO 
status in begin and end quarter 

Age category 55-64 

2018Q4 
2018Q3 

Unemployed 
current Q 

Employed 
current Q 

Inactive 
current Q 

Total 

Unemployed previous Q 33 6 22 61 
Employed previous Q 4 1,416 72 1,492 
Inactive previous Q 10 36 1137 1,183 

Age category 65-74 

2018Q4 
2018Q3 

Unemployed 
current Q 

Employed 
current Q 

Inactive 
current Q 

Total 

Unemployed previous Q 0 0 1 1 
Employed previous Q 0 69 23 92 
Inactive previous Q 1 17 2,164 2,182 

In the publications, only the dichotomy 15-29 versus 30-74 is used for the breakdown by age group; only one cell in the two 
transition matrices is then based on fewer than 30 respondents. The problem of publication of (too many) unreliable figures 
has this way been worked around, but this does create a problem of inconsistency between the marginals of the transition 
matrices and previous quarterly estimates for the distributions of ILO status in BQ and EQ. 

We illustrate this using the transition matrix 2018Q3-2018Q4 for age group 15-29: see Table 16. The estimated transition 
matrix, with the row totals in the column labelled "Total", can be found in LFS_TRANSITION_ENG_QQ_P.xlsx in worksheet 
2018Q3-Q4 (range A53:E56); in the row labelled "Total" we have also inserted the column totals of the transition matrix. So, 
in the row labelled "Total", on the one hand we find the distribution of ILO status in 2018Q4 for 15-29-year-olds as estimated 
on the basis of the LS 2018Q3-2018Q4. In the row labelled "Estimate 2018Q4", on the other hand, we find the distribution of 
ILO status in 2018Q4 (for 15-29-year-olds) as estimated in that quarter based on the full quarterly sample (see footnote 16 
to find these figures on Eurostat's website). These distributions are not equal because in the calibration of the quarterly 
sample of 2018Q4 an age group has the upper limit 29 (the calibration variable for age has groups 0-4, 5-9, ... 25-29, 30-34, 
... 70-74, 75+), while for the calibration of the LS 2018Q3-2018Q4 this is not the case (the calibration variable for age then 
has classes 15-24, 25-34, ... 65-74); note that, on the other hand, 15 is the lower limit of an age group in both calibrations. 
The rows labelled "Difference" and "% Difference" quantify the discrepancy between both distributions of ILO status for 15-
29-year-olds in 2018Q4. The same exercise can be made for the distribution of ILO status in 2018Q3 for 15-29-year-olds. The 
result can be found in the columns labelled "Estimate 2018Q3", "Difference" and "% Difference". Note that we have 
deliberately omitted the figures for "Inactive previous Q", as the estimated number of 1,004,312 would have to be corrected 
to be comparable with the given total of 998,745.18 

  

 
18 The corrected figure that compares to 998,745 is 983,534 = 2,004,099 - (115,368 + 905,197). This correction is fully in line with the correction for numerical 
inconsistency that must be made before the LS can be calibrated.  

https://statbel.fgov.be/sites/default/files/files/documents/Werk%20%26%20opleiding/9.2%20Arbeidsmarkt/9.2.0%20Emploi%20et%20ch%C3%B4mage/LFS_TRANSITION_ENG_QQ_P.xlsx


  |39| 

 

Table 16 Published transition matrix for 2018Q3-2018Q4, for age group 15-29, and comparison with distributions of ILO 
status based on quarterly calibrations 

Age group 15-29 

2018Q4 
2018Q3 

Unemployed 
current Q 

Employed 
current Q 

Inactive 
current Q 

Total 
Estimate 
2018Q3 

Differ-
ence 

% 
Differ-
ence 

Unemployed previous Q 40,128 42,782 33,796 116,706 115,368 1,338 1.16% 
Employed previous Q 22,648 762,896 103,105 888,649 905,197 -16,548 -1.83% 
Inactive previous Q 29,455 80,629 888,660 998,745 - - - 
Total 92,231 886,307 1,025,561 2,004,099    
Estimate 2018Q4 93,115 915,015 1,023,199 2,031,329    
Difference -844 -28,708 2,362 -27,230    
% Difference -0,95% -3,14% 0,23% -1,34%    

It will be clear to the reader that similar inconsistencies between the column and row totals of transition matrices and the 
corresponding quarterly estimates of the distribution of ILO status can always occur – to a greater or lesser extent – if the 
sub-population for which the transition matrix is determined does not match the calibration variables in the model for 
estimating transition matrices. 

3.2 Annual transitions per quarter: transitions between the same quarters in two 
consecutive years 

Statbel publishes annual transitions per quarter (or quarter-specific annual transitions) in the downloadable Excel file 
LFS_TRANSITION_ENG_JQ_P.xlsx. In Table 17 below, we reproduce the global transition matrix, with associated transition 
percentage and sample size matrix, for 15-74-year-olds, as found in lines 11 to 14 in worksheet 2018Q3-2019Q3 in the above-
mentioned Excel file. 

This table should of course be read in the same way as Table 13. 

Table 17 Published quarter-specific annual transition matrix for 2018Q3-2019Q3, with corresponding transition 
percentage and sample size matrices – see publication LFS_TRANSITION_ENG_JQ_P.xlsx 

A. Transitions 

2019Q3 
2018Q3 

Unemployed 
current Q 

Employed 
current Q 

Inactive 
current Q 

Total 

Unemployed previous Q 102,360 98,715 99,143 300,218 
Employed previous Q 65,146 4,453,152 266,952 4,785,249 
Inactive previous Q 106,414 295,994 2,962,820 3,365,228 

B. Transition percentages 

2019Q3 
2018Q3 

Unemployed 
current Q 

Employed 
current Q 

Inactive 
current Q 

Total 

Unemployed previous Q 34.1% 32.9% 33.0% 100.0% 
Employed previous Q 1.4% 93.1% 5.6% 100.0% 
Inactive previous Q 3.2% 8.8% 88.0% 100.0% 

C. Unweighted transitions (respondent sample sizes) 

2019Q3 
2018Q3 

Unemployed 
current Q 

Employed 
current Q 

Inactive 
current Q 

Total 

Unemployed previous Q 146 124 106 376 
Employed previous Q 85 6,183 396 6,664 
Inactive previous Q 116 365 4,510 4,991 

 

https://statbel.fgov.be/sites/default/files/files/documents/Werk%20%26%20opleiding/9.2%20Arbeidsmarkt/9.2.0%20Emploi%20et%20ch%C3%B4mage/LFS_TRANSITION_ENG_JQ_P.xlsx
https://statbel.fgov.be/sites/default/files/files/documents/Werk%20%26%20opleiding/9.2%20Arbeidsmarkt/9.2.0%20Emploi%20et%20ch%C3%B4mage/LFS_TRANSITION_ENG_JQ_P.xlsx
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Comparison of Table 13 and Table 17, in which each time 2018Q3 is the begin quarter, shows that the dynamics over a year 
is larger than over a quarter: while e.g. from quarter to quarter 50.1% remain unemployed, for a year this is 34.1%; for 
employed (94.8% vs. 93.21%) and inactive (91.6% vs. 88.0%) the difference is smaller, but the dynamics is still larger for the 
annual transitions. 

Note that the results in Table 13 are based on an LS of 13,510 respondents, while the results in Table 17 are based on a 
slightly smaller LS of 12,031 respondents. This is of course due to a higher dropout rate over a year than over a quarter. 

Section 3.1 illustrated that estimates of quarterly transitions for certain sub-populations (e.g. non-Belgians, or 55-64-year-
olds) are based on few respondents, which makes the estimates inaccurate. The same applies, of course, to estimates of 
quarter-specific annual transitions. 

Furthermore, it was also illustrated in section 3.1 that the marginals of quarterly transition matrices do not always reproduce 
the quarterly estimates for the distributions of ILO status in the begin quarter and end quarter, e.g. when the sub-population 
of 15-29-year-olds is isolated. This problem too arises in the same way for quarter-specific annual transition matrices. 

3.3 Annual transitions: transitions between consecutive years 

Finally, at the end of each calendar year Statbel publishes annual transitions in the downloadable Excel file 
LFS_TRANSITION_ENG_JJ_P.xlsx; currently, annual transitions are only available for 2017-2018, 2018-2019 and 2019-2020.  
To estimate the annual transitions, we calculate the unweighted average of four quarter-specific annual transitions, as 
explained in section 2.9. In other words, the annual transition matrices in LFS_TRANSITION_ENG_JJ_P.xlsx are unweighted 
averages of quarter-specific annual transition matrices in LFS_TRANSITION_ENG_JQ_P.xlsx. In Table 18 we show the annual 
transition matrix for 2018-2019, with corresponding transition percentage matrix and sample size matrix. Note that the 
annual transition percentage matrix is not the average of four quarter-specific annual transition percentage matrices, but is 
calculated directly from the annual transition matrix: see section 1.5. 

Table 18 Published annual transition matrix for 2018-2019, with corresponding transition percentage and sample size 
matrices – see publication EAK_TRANSITIE_NL_JJ_P.xlsx 

A. Transitions 

2019 
2018 

Unemployed 
current J 

Employed 
current J 

Inactive 
current J 

Total 

Unemployed previous J 109,689 90,340 100,714 300,743 
Employed previous J 68,180 4,445,661 230,220 4,744,062 
Inactive previous J 95,776 283,498 3,028,909 3,408,183 

B. Transition percentages 

2019 
2018 

Unemployed 
current J 

Employed 
current J 

Inactive 
current J 

Total 

Unemployed previous J 36.5% 30.0% 33.5% 100.0% 
Employed previous J 1.4% 93.7% 4.9% 100.0% 
Inactive previous J 2.8% 8.3% 88.9% 100.0% 

C. Unweighted transitions (respondent sample sizes) 

2019 
2018 

Unemployed 
current J 

Employed 
current J 

Inactive 
current J 

Total 

Unemployed previous J 602 465 496 1,563 
Employed previous J 366 24,756 1,507 26,629 
Inactive previous J 423 1,418 18,565 20,406 

Panel B in Table 18 and panel B in Table 17 show the same tendency as regards the dynamics of the labour market situation 
from one year to the next (here: from 2018 to 2019): of the unemployed in 2018, around one-third (33.5%) are employed 
one year later, and around two-thirds are not (36.5% remain unemployed and 30.0% become inactive). It is of course clear 

https://statbel.fgov.be/sites/default/files/files/documents/Werk%20%26%20opleiding/9.2%20Arbeidsmarkt/9.2.0%20Emploi%20et%20ch%C3%B4mage/LFS_TRANSITION_ENG_JJ_P.xlsx
https://statbel.fgov.be/sites/default/files/files/documents/Werk%20%26%20opleiding/9.2%20Arbeidsmarkt/9.2.0%20Emploi%20et%20ch%C3%B4mage/LFS_TRANSITION_ENG_JJ_P.xlsx
https://statbel.fgov.be/sites/default/files/files/documents/Werk%20%26%20opleiding/9.2%20Arbeidsmarkt/9.2.0%20Emploi%20et%20ch%C3%B4mage/LFS_TRANSITION_ENG_JQ_P.xlsx
https://statbel.fgov.be/sites/default/files/files/documents/Werk%20%26%20opleiding/9.2%20Arbeidsmarkt/9.2.0%20Emploi%20et%20ch%C3%B4mage/LFS_TRANSITION_ENG_JJ_P.xlsx
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from panels C in both tables that the annual transition (percentage) figures are more accurate than the quarter-specific 
annual transition (percentage) figures. 

Table 19 below shows that for the sub-population of non-Belgians, for example, the annual transitions will be more accurate 
than the quarterly transitions (cf. Table 15) or the quarter-specific annual transitions for this sub-population. The same, of 
course, applies to other sub-populations. Consequently, breakdowns of annual transition matrices may go beyond 
breakdowns of quarter-specific transition matrices. 

Table 19 Distribution of the longitudinal sub-sample 2018-2019 of non-Belgians (EU and Nt-EU combined) according to 
ILO status in begin and end quarter 

2019 
2018 

Unemployed 
current J 

Employed 
current J 

Inactive 
current J 

Total 

Unemployed previous J 120 93 102 315 
Employed previous J 69 2,414 149 2,632 
Inactive previous J 90 161 1,793 2,044 

The same remark as in sections 3.1 and 3.2 can also be made regarding the consistency between marginals of annual 
transition matrices and annual estimates for the distributions of ILO status in BQ and EQ. 

3.4 A case study: transitions of short vs. long term unemployed 

After a calibration is made for an LS, arbitrary sub-populations can be studied in more detail regarding their transitions. In 
this section, we illustrate this for the unemployed and compare the short-term and long-term unemployed. 

Above, we made extensive use of the LS 2018Q3-2018Q4 to introduce Statbel's methods for estimating quarterly transitions. 
The estimated transition matrix is shown in Table 13. This section focuses exclusively on the unemployed in the BQ 2018Q3, 
and the effect of the duration of their unemployment on their transition probabilities. As usual, we differentiate between 
short-term unemployed – those who have been unemployed for one year or less (in 2018Q3) – and long-term unemployed – 
those who have been unemployed for at least one year (in 2018Q3). For a small number of unemployed in the BQ in the LS, 
the duration of unemployment is not known. Table 20 shows the estimated transitions for the unemployed in the BQ, broken 
down by duration of unemployment. Note that the rows labelled "All unemployed" in Table 20 correspond exactly to the 
rows labelled "Unemployed previous Q" in Table 13. The totals in the last column in panel A of Table 20 (except for the global 
total 300,216), which are sums of calibrated weights for unemployed respondents in the LS, do not equal corresponding 
estimates that could be made based on the quarterly sample for 2018Q3, for the simple reason that a differentiation by 
unemployment duration is not included in the calibration models. 

Table 20 allows us to conclude that the long-term unemployed in 2018Q3 have a substantially higher likelihood (65.3%) of 
still being unemployed a quarter later than the short-term unemployed (37.3%). In a similar vein, in 2018Q3 short-term 
unemployed have a substantially higher likelihood (36.8%) of being employed a quarter later than long-term unemployed 
(13.1%). The transition probabilities for unemployed people with unknown unemployment duration should be ignored, due 
to the small number of respondents on which these estimates are based; we have added these for completeness, and to 
clarify the alignment with the results in Table 13. 
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Table 20 Quarterly transitions 2018Q3-2018Q4 for unemployed in the BQ, by duration of unemployment 

A. Transitions for unemployed in BQ 2018Q3 

2018Q4 
2018Q3 

Unemployed Employed  Inactive Total 

Short-term unemployed 60,551 59,826 42,018 162,395 
Long-term unemployed 88,667 17,775 29,413 135,854 
Employment duration unknown 1,237 729 - 1,967 
All unemployed 150,455 78,330 71,431 300,216 

B. Transition percentages for unemployed in BQ 2018Q3 

2018Q4 
2018Q3 

Unemployed Employed  Inactive Total 

Short-term unemployed 37.3% 36.8% 25.9% 100.0% 
Long-term unemployed 65.3% 13.1% 21.7% 100.0% 
Employment duration unknown 62.9% 37.1% - 100.0% 
All unemployed 50.1% 26.1% 23.8% 100.0% 

C. Unweighted transitions for unemployed in BQ 2018Q3 

2018Q4 
2018Q3 

Unemployed Employed  Inactive Total 

Short-term unemployed 86 93 69 248 
Long-term unemployed 137 25 61 223 
Employment duration unknown 1 2 0 3 
All unemployed 224 120 130 474 

The same exercise can be done for annual transitions. Table 21 shows the estimated annual transition rates since the start of 
the Belgian panel survey for the unemployed in the begin year, broken down according to unemployment duration. Note 
that the row labelled "All unemployed" for begin year 2018 (2nd panel in Table 21) corresponds exactly to the row labelled 
"Unemployed previous J" in panel B of Table 18. 

Table 21 Annual transitions 2017-2018, 2018-2019 and 2019-2020 for unemployed in the begin year, by duration of 
unemployment 

2018 
2017 

Unemployed Employed  Inactive Total 

Short-term unemployed 33.3% 41.3% 25.4% 100.0% 
Long-term unemployed 51.3% 19.3% 29.4% 100.0% 
Employment duration unknown - 56.7% 43.3% 100.0% 
All unemployed 42.1% 30.5% 27.5% 100.0% 

2019 
2018 

Unemployed Employed  Inactive Total 

Short-term unemployed 27.4% 39.9% 32.7% 100.0% 
Long-term unemployed 45.8% 19.9% 34.3% 100.0% 
Employment duration unknown - 51.7% 37.8% 100.0% 
All unemployed 36.5% 30.0% 33.5% 100.0% 

2020 
2019 

Unemployed Employed  Inactive Total 

Short-term unemployed 27.9% 36.9% 35.3% 100.0% 
Long-term unemployed 52.9% 14.0% 33.1% 100.0% 
Employment duration unknown - 77.4% 22.6% 100.0% 
All unemployed 38.9% 26.9% 34.2% 100.0% 
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This Table 21 too confirms the expected trends: the long-term unemployed have a higher (smaller) chance of being 
unemployed (employed) a year later than the short-term unemployed. 
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CONCLUSIONS 

In this analysis, we have explained how the Belgian labour force transition matrices are produced by Statbel, and how they 
can be interpreted. We have shown that Eurostat's (2015b) method for producing transition matrices can be adapted to meet 
various requirements via a single model: 

 Consistency with global distributions (for 15-74-year-olds) of ILO status in BQ and EQ; 

 Consistency with the distributions of ILO status in BQ and EQ by sex; 

 Consistency with distributions of ILO status in BQ and EQ for various other sub-populations; 

 To a certain extent, transfer the structure of the calibrated EQ sample into the LS. 

These sub-populations can be the cells in the crossing of two or more background variables, such as region, sex, age group, 
nationality category, education level, etc. In practice, of course, the size of the LS will be an important element in determining 
the categories of such variables, and in the choice of the variables to be included in the calibration model. 

We have shown that known calibration techniques, as introduced by Deville and Särndal (1992), can be efficiently applied to 
make the calibrations for the production of transition matrices, with breakdowns into multiple background variables. The 
necessary preliminary corrections of distributions of ILO status in the BQ (by adjusting estimated numbers of inactive 
persons), in order to achieve consistency between the distributions of ILO status in BQ and EQ which are used as benchmarks 
in the calibration of the LS, can also be made using the same calibration techniques. 

The SAS® macro CALMAR2 (Le Guennec and Sautory, 2002; Sautory, 1993), supplemented by additional macros that allow 
for efficient and flexible construction of CALMAR2 inputs, allows Statbel to easily apply sophisticated models. This facilitates 
to a significant extent the comparison of various candidate calibration models and the determination of a final model. Of 
course, the same can be achieved with many other software packages that have implemented the generally known 
calibration techniques of Deville and Särndal (1992). 

Statbel's models for producing transition matrices are based on calibration of the LS, i.e. on the re-weighting of microdata. 
This is a fundamental difference from the original techniques proposed in Eurostat (2015b), where aggregate data are 
corrected each time. With the appropriate software, it is therefore easier to include more background variables into the 
models. 

Another important difference with Eurostat (2015b) is that all desired corrections of the LS can be made simultaneously: 
corrections aimed at preserving distributions of ILO status in BQ and EQ, as well as corrections aimed at transferring to some 
extent the structure of the calibrated EQ sample into the LS. 

From 2021 onward, Statbel applies these integrated methods for the production and publication of estimated transitions on 
the labour market. 

Finally, we note that Statbel's solution for calibrating the LS can be an alternative to the application of econometric models 
(Kiiver and Espelage, 2016). Subject to further development of suitable variance estimation methods for evaluating the 
accuracy of the estimated transitions as well as for comparing transitions in sub-populations, estimating transition matrices 
for various sub-populations can immediately support statistical analysis (such as comparing sub-populations). 
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ANNEXES 

A OVERVIEW OF LONGITUDINAL SAMPLES 

Table B 1 Composition of the longitudinal sample (LS) for pairs of consecutive quarters 

Begin 
quarter 

End 
quarter 

RGs in the 
overlap 

1st RG 2nd RG 3rd RG 
Observations from waves… 

2016Q3 2016Q4 1 and 2 1 and 2 1 and 2 - 
2016Q4 2017Q1 1, 2 and 6 2 and 3 2 and 3 1 and 2 
2017Q1 2017Q2 2 and 7 3 and 4 1 and 2 - 
2017Q2 2017Q3 3, 4 and 8 2 and 3 2 and 3 1 and 2 
2017Q3 2017Q4 5 and 9 2 and 3 1 and 2 - 
2017Q4 2018Q1 6 and 10 3 and 4 1 and 2 - 
2018Q1 2018Q2 7 and 11 3 and 4 1 and 2 - 
2018Q2 2018Q3 8 and 12 3 and 4 1 and 2 - 
2018Q3 2018Q4 9 and 13 3 and 4 1 and 2 - 
2018Q4 2019Q1 10 and 14 3 and 4 1 and 2 - 
2019Q1 2019Q2 11 and 15 3 and 4 1 and 2 - 
2019Q2 2019Q3 12 and 16 3 and 4 1 and 2 - 
2019Q3 2019Q4 13 and 17 3 and 4 1 and 2 - 
2019Q4 2020Q1 14 and 18 3 and 4 1 and 2 - 
2020Q1 2020Q2 15 and 19 3 and 4 1 and 2 - 
2020Q2 2020Q3 16 and 20 3 and 4 1 and 2 - 
2020Q3 2020Q4 17 and 21 3 and 4 1 and 2 - 

Table B 2 Composition of the longitudinal sample (LS) for pairs of the same quarters in consecutive years 

Begin 
quarter 

End 
quarter 

RGs in the 
overlap 

1st RG 2nd RG 
Observations from waves… 

2016Q3 2017Q3 3 1 and 3 - 
2016Q4 2017Q4 5 and 6 1 and 3 1 and 3 
2017Q1 2018Q1 6 and 7 2 and 4 1 and 3 
2017Q2 2018Q2 7 and 8 2 and 4 1 and 3 
2017Q3 2018Q3 8 and 9 2 and 4 1 and 3 
2017Q4 2018Q4 9 and 10 2 and 4 1 and 3 
2018Q1 2019Q1 10 and 11 2 and 4 1 and 3 
2018Q2 2019Q2 11 and 12 2 and 4 1 and 3 
2018Q3 2019Q3 12 and 13 2 and 4 1 and 3 
2018Q4 2019Q4 13 and 14 2 and 4 1 and 3 
2019Q1 2020Q1 14 and 15 2 and 4 1 and 3 
2019Q2 2020Q2 15 and 16 2 and 4 1 and 3 
2019Q3 2020Q3 16 and 17 2 and 4 1 and 3 
2019Q4 2020Q4 17 and 18 2 and 4 1 and 3 
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B GENERAL PRINCIPLES AND TERMINOLOGY OF CALIBRATION  

This annex provides a brief introduction to calibration. It is in no way intended to be complete. The sole aim is to provide a 
better understanding of the main text (chapter 2), especially by clarifying the terminology of calibration theory. The terms 
written in bold below are (statistical) terms used (usually frequently) in the main text. These terms are written in bold in this 
annex so that the reader (of the main text) can easily find them here, in order to better understand their meaning. Terms in 
italics in this annex do not appear in the main text but are terms from calibration theory or from the underlying theory of 
mathematical optimisation; these terms are shown in italics only once. 

More detail on calibration theory and its applications can be found in the literature; see section B.7 in this annex for a 
selection of publications. Särndal (2007) and Devaud & Tillé (2019) contain numerous other references discussing theory and 
applications. 

B.1 OBJECTIVE 

Calibration is a step in the processing of data where initial weights of the units in a dataset are adjusted to certain reference 
distributions. The direct result of calibration are correction factors, which are applied to the data to be calibrated in order 
to arrive at calibrated estimates of certain indicators. Calibration is therefore an estimation method. 

B.2 AVAILABLE DATA 

The data to be calibrated may or may not be aggregated. If not aggregated, then we assume that the data to be calibrated is 
a list of individual observations, where each observation consists of a set (or vector) of values for various variables, in which 
we distinguish three types: the calibration variables, the study variables, and the initial weight. The indicators referred to 
above are (combinations of) parameters of study variables, such as totals and averages, numbers and proportions, ratios, 
etc. 

The most common example of non-aggregated data is the result of the observation of units in a random sample; the initial 
weight is then usually the sampling weight, but can also be an adjusted sampling weight, such as a sampling weight corrected 
for non-response, or a previously calibrated weight, etc. 

In sections B.3 and B.4 in this annex B it is implicitly assumed that non-aggregated data should be calibrated. We will come 
back to aggregated data to be calibrated in section B.5. 

The reference distributions referred to above are calculated from one or more datasets other than the one to be calibrated. 
The dataset(s) from which reference distributions must be determined may be in aggregate or non-aggregate form. In both 
cases, it can be a (study or target) population or a (weighted) sample. The reference distributions can be either true or 
estimated population distributions. 

B.3 MATHEMATICAL OPTIMISATION PROBLEM 

Calibration (of non-aggregated data) can always be formulated as a mathematical optimisation problem, more specifically as 
a (mathematical) minimisation problem. In the context of calibration, such a problem – which we will call the calibration 
problem, and later also the calibration model – consists of a set of calibration equations, and a target function (or objective 
function) to be minimised. The above-mentioned correction factors are the unknowns in the calibration equations and the 
arguments in the target function. Solving a calibration problem then amounts to solving the (mathematical) minimisation 
problem, i.e. finding a solution to the calibration equations that minimises the target function. We assume in this analysis 
that a solution can be found with the method of Lagrange multipliers. 

B.3.1 CALIBRATION EQUATIONS 

A calibration equation is a mathematical equality where the left-hand side is a weighted sum of a calibration variable over 
(a subset of) the dataset to be calibrated, and the right-hand side is a predetermined real number taken from the reference 
distributions. Each weight in the left-hand side is the product of a known initial weight and an unknown correction factor; 
we call these products the calibrated weights. The left-hand side can always be interpreted as an estimate of a certain 
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parameter, the right-hand side as a reference value (true or previously estimated value) for that parameter. Consequently, 
the calibration equations determine which estimates, based on the dataset to be calibrated and using the calibrated weights, 
should be equal to certain reference values. 

Calibration equations are always linear in the (unknown) correction factors as well as in the (unknown) calibrated weights. 

B.3.2 DISTANCE MEASURE, CALIBRATION FUNCTION AND CALIBRATION METHOD 

The objective function in the minimisation problem is a global distance measure, namely the sum of the distances 𝐺𝐺𝑖𝑖(𝑤𝑤𝑖𝑖 ,𝑑𝑑𝑖𝑖) 
between the initial weight 𝑑𝑑𝑖𝑖  and the calibrated weight 𝑤𝑤𝑖𝑖  of the individual observations 𝑖𝑖; the statistician wishing to perform 
a calibration needs to choose the distances (via the software he or she wishes to use). Provided that the function 𝐺𝐺𝑖𝑖(. ,𝑑𝑑𝑖𝑖), 
for each 𝑖𝑖, satisfies certain conditions (continuous differentiability, convexity, etc.), inverting the derivative of this function 
leads to a so-called calibration function 𝐹𝐹𝑖𝑖(. ), such that 𝑤𝑤𝑖𝑖 = 𝑑𝑑𝑖𝑖𝐹𝐹𝑖𝑖(𝐱𝐱𝑖𝑖𝑇𝑇λ). Herein is 𝐱𝐱𝑖𝑖𝑇𝑇 the row vector of calibration variables 
for observation 𝑖𝑖, and λ the column vector of Lagrange multipliers. Using the calibration functions, the calibration equations 
can be written as a function of the Lagrange multipliers. Solving the minimisation problem therefore transforms into solving 
the system of equations as a function of the Lagrange multipliers. If the solution λ exists and is found, then the correction 
factors 𝐹𝐹𝑖𝑖(𝐱𝐱𝑖𝑖𝑇𝑇λ), and consequently the calibrated weights 𝑤𝑤𝑖𝑖 = 𝑑𝑑𝑖𝑖𝐹𝐹𝑖𝑖(𝐱𝐱𝑖𝑖𝑇𝑇λ) can be calculated. 

Choosing the distance functions 𝐺𝐺𝑖𝑖(. ,𝑑𝑑𝑖𝑖) is the same as choosing the calibration functions 𝐹𝐹𝑖𝑖(. ). This choice amounts to 
choosing the so-called calibration method. Depending on the nature of the chosen calibration functions, we refer to the 
linear, the exponential, … calibration method. 

Certain quadratic distances 𝐺𝐺𝑖𝑖(𝑤𝑤𝑖𝑖 ,𝑑𝑑𝑖𝑖) lead to the linear calibration functions 𝐹𝐹𝑖𝑖(𝐱𝐱𝑖𝑖𝑇𝑇λ) = 1 + 𝑞𝑞𝑖𝑖𝐱𝐱𝑖𝑖𝑇𝑇λ, with 𝑞𝑞𝑖𝑖 = 𝐹𝐹′𝑖𝑖(0). With 
this choice of distances 𝐺𝐺𝑖𝑖(𝑤𝑤𝑖𝑖 ,𝑑𝑑𝑖𝑖) we say that the linear (calibration) method is chosen. If for example 𝐹𝐹𝑖𝑖(𝐱𝐱𝑖𝑖𝑇𝑇λ) =
𝑠𝑠𝑒𝑒𝑝𝑝(𝑞𝑞𝑖𝑖𝐱𝐱𝑖𝑖𝑇𝑇λ), then we refer to the exponential (or multiplicative) method; we refer to the literature (section B.7) for the 
distance functions corresponding to these calibration functions. 

The linear method can be supplemented by limits on the correction factors: 𝐿𝐿 ≤ 𝐹𝐹𝑖𝑖(𝐱𝐱𝑖𝑖𝑇𝑇λ) ≤ 𝑈𝑈, in which the lower limit 𝐿𝐿 and 
the upper limit 𝑈𝑈 have to be chosen by the statistician; we then refer to the truncated linear method. If the exponential 
method is supplemented in some way by such limits, then we refer to the logit method. By choosing appropriate limits for 
the correction factors, it can be avoided that correction factors, and thus indirectly also the calibrated weights, are negative 
or assume extreme values. 

Other choices for the distances, calibration functions or calibration methods are discussed in the literature; developers of 
calibration software always make a (limited) selection of calibration methods they implement. 

B.3.3 LINEAR STRUCTURE 

From what precedes in this annex it must be clear that a calibration problem or calibration model is completely determined 
by the choice of the calibration variables and the choice of the calibration method. The choice of the calibration variables 
determines the calibration equations and the expression 𝐱𝐱𝑖𝑖𝑇𝑇λ, which we will call the linear structure (of the calibration 
model). This linear structure can be formally represented. To introduce a handy notation for the linear structure, we assume 
that a dataset has to be calibrated according to the distributions of three categorical (qualitative) variables A, B and C. With 
the (additive) linear structure A + B + C, we aim to calibrate according to the marginal distributions of the variables A, B and 
C. With the linear structure A + B*C, we aim to calibrate to the marginal distribution of the variable A and the joint distribution 
of the variables B and C. With the linear structure A*C + B*C, we aim to calibrate to the joint distribution of the variables A 
and C and the joint distribution of the variables B and C. With the linear structure A*B*C, we aim to calibrate to the joint 
distribution of the variables A, B and C. Etc. 

It will be clear to the reader that with (only) three categorical variables some other linear structures can be determined. The 
notation can of course also be extended to more categorical variables. Applicability of a calibration model with a certain 
linear structure naturally depends on the availability of the reference distributions induced by the linear structure. 

For a linear structure such as A*C + B*C, we call A*C and B*C the terms. The linear structure A + B + C has three terms, 
namely A, B and C. 
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Since in the main text of this analysis the calibration variables are always categorical or qualitative, we will not discuss here 
linear structures that include quantitative calibration variables. 

Choosing a linear structure determines which variables 𝑒𝑒𝑗𝑗  in the vectors 𝐱𝐱𝑖𝑖𝑇𝑇 = �⋯ 𝑒𝑒𝑖𝑖𝑗𝑗 ⋯ � should be included.  In general, 
each term in the linear structure will imply a set of multiple variables 𝑒𝑒𝑗𝑗, and each of these variables is a 0-1 or indicator 
variable. For example, if A is a term in a linear structure, then for each value 𝑠𝑠 of A a 0-1 variable will have to be created, 
which has value 1 for observations 𝑖𝑖 for which A = 𝑠𝑠, and value 0 for observations 𝑖𝑖 for which A ≠ 𝑠𝑠. For example, if B*C is a 
term in a linear structure, then for each combination 𝑏𝑏𝑐𝑐 of B and C (i.e. each cell 𝑏𝑏𝑐𝑐 in the crossing of the variables B and C) 
a 0-1 variable will have to be created, which has value 1 for observations 𝑖𝑖 for which B = 𝑏𝑏 and C = 𝑐𝑐, and value 0 for 
observations 𝑖𝑖 for which B ≠ 𝑏𝑏 and/or C ≠ 𝑐𝑐. 

B.3.4 EXISTENCE AND UNIQUENESS OF SOLUTIONS 

With the appropriate choice of distance functions 𝐺𝐺𝑖𝑖(. ,𝑑𝑑𝑖𝑖), the solution to a calibration problem or calibration model is 
unique. This is primarily due to the necessary convexity of the distance functions. More detail can be found in the literature 
(section B.7). 

The existence of a solution (which ultimately results in correction factors and calibrated weights) is formally related to the 
existence of a solution (possibly several solutions) to the system of calibration equations, extended with the possible 
limitation of the correction factors that follows from the choice of the calibration method. We list a number of aspects that 
may or may not lead to the existence of a solution to the extended system of calibration equations: 

(1) The referencedistributions must be consistent. In particular, this always means that all reference distributions must 
lead to exactly the same total (population) figure.  More generally, it also means that if different terms in the linear 
structure define the same sub-population (as the union of one or more cells resulting from the terms), the 
corresponding reference distributions must result in the same (sub-population) figure. Inconsistency can occur 
when reference distributions are calculated from different sources. 

(2) The system of calibration equations should not be overdetermined. By this we mean, for example (!) the following. 
If a term in the linear structure generates a particular cell to which a non-zero calibration total corresponds, then 
that cell must be represented in the dataset to be calibrated. Formally, we can say that for any calibration equation 
where the right-hand side is non-zero, the left-hand side must not be an "empty sum". 

(3) Any interval [𝐿𝐿,𝑈𝑈] that defines the limits of the correction factors, if any, should not be too narrow. It is possible 
that the system of calibration equations without the limits has solutions, but that these do not meet the limits 
determined by [𝐿𝐿,𝑈𝑈]. Calibration software rarely provides an option to automatically calculate a (minimum) interval 
[𝐿𝐿,𝑈𝑈] (ReGenesees, developed by ISTAT is an exception, see Zardetto, 2015). In practice, the user will then start by 
choosing "reasonable" values for 𝐿𝐿 and 𝑈𝑈 and try to solve the calibration problem with these limits. If a solution 
exists, the interval [𝐿𝐿,𝑈𝑈] may be narrowed, by increasing 𝐿𝐿 and/or decreasing 𝑈𝑈; if no solution exists, the interval 
[𝐿𝐿,𝑈𝑈] must be widened, by decreasing 𝐿𝐿 and/or increasing 𝑈𝑈. After that, another attempt can be made to solve the 
calibration problem with these new limits.  Looking for an "optimal" interval [𝐿𝐿,𝑈𝑈] (i.e. an interval the statistician is 
satisfied with), is therefore an iterative (practically trial and error) process. 

B.4 PRACTICAL PROPERTIES 

B.4.1 HIERARCHICAL NATURE OF THE LINEAR STRUCTURE, AND DISTRIBUTIVITY 

If a term in the linear structure of a calibration model implies the joint distribution of variables A, B and C, for example, then 
that term also implies the joint distributions of A and B, of A and C and of B and C, as well as the marginal distributions of A, 
B and C. Reference distributions automatically satisfy this property (if calculated from the same source). Therefore, a 
calibration cannot be made according to the joint distribution of e.g. two variables A and B with a given model, without 
calibrating to the marginal distributions of A and B. Conversely, it is of course possible to calibrate to e.g. the marginal 
distributions of a number of variables with a given calibration model, but not to certain joint distributions of two or more of 
those variables. It follows that, for example, the linear structure A*B*C can be written in numerous ways: 
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A*B*C 

= A*B*C + A*B + A*C + B*C 

= A*B*C + A*B + A*C + B*C + A + B + C 

= A*B*C + A + B + C 

= … 

Moreover, the term 1 can always be added, as for example in A*B*C + 1, or in A + B*C + 1; here 1 stands for a categorical 
variable that takes on only one value, which incidentally is translated into a variable 𝑒𝑒𝑗𝑗  with value 1 for all observations. 

Finally, we can also apply a distributivity rule in the formulation of linear structures, as for example in A*B + A*C = A*(B + C), 
or in A + B*(C*D + E) = A + B*C*D + B*E. 

These conventions in the notation of linear structures make it easy and efficient to discuss and propose various alternative 
models, one of which may be an extension or simplification of the other, or some of whose terms are common but not others. 

The distributivity rule can be used to factorise a linear structure, as for instance in A*B + A*C = A*(B + C) in which the term 
A is isolated, or in A*B*C + D*E*B*C = (A + D*E)*B*C in which the term B*C is isolated. This can lead to a so-called 
stratification of calibration models, and the application of a simpler calibration model (B + C in the 1st example; A + D*E in 
the 2nd example) in each calibration stratum (i.e. category of A in the 1st example; cell in the crossing B*C in the 2nd example) 
separately. This may be useful to calibrate large datasets (Vanderhoeft, 2001), to let the calibration method and/or the 
limitation of correction factors depend on the calibration strata, and even to let the linear structure depend on the 
calibration strata. 

B.4.2 POST-STRATIFICATION MODELS 

If the linear structure is the complete crossing of all the calibration variables in it, we refer to a post-stratification model. 
Examples are: A*B*C, B*C, A, and also the simplest model with linear structure 1. "Post-stratification is a simple, well-known 
and widely used weighting technique", as stated and illustrated in Bethlehem (2008, transl.). This technique results in a unique 
correction factor and/or (final) weight for each post-stratum. Embedded in the calibration theory, such a special solution is 
generally not the only possible solution of the system of calibration equations, but by using any calibration method, this 
solution is indeed the result. 

Note that for a post-stratification model, the choice of calibration method does not affect the result (provided that the limit 
of the correction factors is suitably chosen, and if the calibration totals are positive, which is the case in standard 
applications). 

B.4.3 THE SAME CORRECTION FACTOR FOR ALL OBSERVATIONS WITH THE SAME CALIBRATION VARIABLES 

From section B.3.2 in this annex we can conclude that the correction factors 𝐹𝐹𝑖𝑖(𝐱𝐱𝑖𝑖𝑇𝑇λ) are the same for all observations 𝑖𝑖 with 
the same vector of calibration variables 𝐱𝐱𝑖𝑖𝑇𝑇. This can be seen as a generalisation of the inherent property of the post-
stratification technique; see previous section B.4.2. 

B.4.4 POSITIVE CORRECTION FACTORS AND CALIBRATED WEIGHTS 

Not every calibration method necessarily results in only positive correction factors. The linear method can sometimes 
produce negative correction factors. The exponential method always produces only positive correction factors (if a solution 
exists). The truncated linear method can, however, produce only positive correction factors (if a solution exists) with the 
appropriate choice of the limiting interval [𝐿𝐿,𝑈𝑈]. 

Finally, if we assume that the initial weights are positive, then the sign of the correction factors determines the sign of the 
calibrated weights. 
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B.5 AGGREGATED DATA 

The data to be calibrated do not always present themselves as a set of individual data. This may be the case when the person 
who is to perform the calibration has no right to handle the datasets containing individual data (e.g. because the privacy of 
individual respondents needs to be protected), or if a researcher wants to try a calibration exercise on a set of statistics 
published in aggregate form. 

In Eurostat (2015b), data to be calibrated are always presented as tables of estimates – more specifically as transition 
matrices; see also section 2.8 in chapter 2 of this analysis. This is undoubtedly due to the choice of the algorithm to perform 
the calibration, namely iterative proportional fitting (IPF). This algorithm has indeed been developed in the context of 
adjusting aggregate data (e.g. 2-dimensional or multi-dimensional frequency tables); an important application can be found 
in Eurostat (2003). 

B.6 SOFTWARE USED BY STATBEL 

Statbel's statisticians and methodologists use SAS® Enterprise Guide® for processing and analysing data. For calibration, the 
SAS®-macro CALMAR2 (Sautory, 1993; LeGuennec & Sautory, 2002) is used. 

The input for CALMAR2 is twofold: (1°) a dataset containing the data to be calibrated (usually from a respondent sample), 
and (2°) a dataset containing the calibration totals for a given calibration model. Preparing the first dataset is rather 
elementary, given the simple structure of this dataset and the flexibility that the macro CALMAR2 offers in this respect. The 
preparation of the second dataset is more complex, firstly because the structure of that dataset is not standard, and secondly 
because each calibration model implies a different dataset. Indeed, this dataset partly defines the calibration model that will 
be applied. For this reason, Statbel has developed additional generic macros that create the second input dataset (with 
calibration totals) for CALMAR2 from one or more simply structured datasets and that also extend the first input dataset 
(with the data to be calibrated) with variables that CALMAR2 uses in the calibration. One such generic macro is CountsK, 
which by repeated application calculates the calibration totals corresponding to the different terms in the linear structure of 
the calibration model and adds them to the second input dataset, and with each application adds an appropriate calibration 
variable to the first input dataset. Macro CountsK treats each term A*B*C*... which depends on one or more categorical 
calibration variables A, B, C, .... separately. An example: 

%CountsK(frame=Frame1, wei=WEI, sample=Dataset1, varlst=A B C, lev=E, term=ABC, …) 

calculates the calibration totals from the dataset Frame1 according to the term A*B*C, which results from the variable list “A 
B C”, in a calibration model, using a weight variable WEI in this dataset, and stores these totals in one record of the dataset 
Marges_E. This record is given the identifier cv_E_ABC, as a result of the values of the arguments lev= and term= when 
CountsK is called; “cv” stands for calibration variable. Moreover, the macro CountsK will add the calibration variable 
cv_E_ABC to Dataset1, which contains the data to be calibrated; cv_E_ABC is a numbering of the cells in the crossing A*B*C. 
Macro CountsK also checks that each in Frame1 non-empty cell in the A*B*C crossing is represented in Dataset1. Additional 
arguments of CountsK govern the initialisation of the dataset Marges_E, the addition of a record and the closing of Marges_E, 
as well as the production of an overview or report of the (repeated) application of CountsK. 

For handling calibration terms involving one quantitative and one or more categorical variables, Statbel has developed the 
macro TotalsK; finally, for the treatment of contrast constraints or comparisons, there is the macro Contrast1. The macros 
TotalsK and Contrast1 are not used for calibration of longitudinal samples in this analysis. A complete treatment of the macros 
CountsK, TotalsK and Contrast1 is of course beyond the scope of this analysis. 

We note that Frame1, from which calibration totals are calculated, can be either a population or a sample, and both can be 
in aggregate or non-aggregate form. Appropriate weights for calculating the calibration totals are stored in the variable WEI. 
Finally, it is also important that both Frame1 and Dataset1 contain the variables A, B, C, ...; furthermore, both Frame1 and 
Dataset1 can have a very simple structure. 

The set of macros CALMAR2, CountsK, ... allows Statbel to flexibly experiment with a wide range of calibration models, to 
finally evolve towards a final model. 
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C NC CALIBRATION MODELS: MATHEMATICAL ASPECTS 

The original approach in Eurostat (2015b) for obtaining numerical consistency between the calibrated BQ and EQ samples is 
cell-based. Here, "cell" refers to any combination of background variables such as sex, region of residence, level of education, 
age group, etc.; by extension, a "cell" is also any combination of background variables and ILO labour market status. Eurostat 
(2015b) merely uses the background variables sex and age group. 

In this annex we show that the Eurostat method of adjusting the calibrated BQ sample to the calibrated EQ sample can be 
formulated as a calibration model. This makes it possible to adapt Eurostat's original cell-by-cell approach if (for example) a 
cell is empty for the BQ but not for the EQ. 

C.1 NOTATION 

Below, we limit ourselves to the two background variables SEX (sex) and REG (region of domicile; if necessary, we differentiate 
between REG1 and REG2 for BQ and EQ respectively). SEX can take on values 𝑠𝑠 = 1 (male) and 𝑠𝑠 = 2 (female); REG can take 
on values 𝑠𝑠 = 1 (BRU), 𝑠𝑠 = 2 (VLA) and 𝑠𝑠 = 3 (WAL). ILO status STAT has three possible values 𝑏𝑏 = 1 (unemployed), 𝑏𝑏 = 2 
(employed) and 𝑏𝑏 = 3 (inactive); depending on the context STAT stands for STAT1 or STAT2, i.e. ILO status in BQ or EQ 
respectively. A “cell” is a combination 𝑠𝑠𝑠𝑠 of SEX and REG, and by extension a combination 𝑠𝑠𝑠𝑠𝑏𝑏 of SEX, REG and STAT. The 
index 𝑖𝑖 is used to identify the respondents; with notations such as 𝑖𝑖 ∈ 𝑠𝑠𝑠𝑠 (i.e. "𝑖𝑖 element of cell 𝑠𝑠𝑠𝑠", or "𝑖𝑖 in cell 𝑠𝑠𝑠𝑠", ...) we 
indicate that respondent 𝑖𝑖 belongs to the sub-sample of persons for which SEX = 𝑠𝑠 and REG = 𝑠𝑠. Similarly, 𝑖𝑖 ∈ 𝑠𝑠𝑠𝑠𝑏𝑏 indicates 
that respondent 𝑖𝑖 belongs to cell 𝑠𝑠𝑠𝑠 and has ILO status 𝑏𝑏, or in short that 𝑖𝑖 belongs to cell 𝑠𝑠𝑠𝑠𝑏𝑏. The context should show 
whether a respondent 𝑖𝑖 belongs to the BQ sample, the EQ sample or the longitudinal sample. 

The variables SEX and/or REG can easily be replaced by other background variables or expanded to three or more background 
variables. 

The following quantities are essential in the mathematical explanation in this annex: 

 𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵 = calibrated weight for respondent 𝑖𝑖 in the BQ sample 

 𝑤𝑤𝑖𝑖
𝐸𝐸𝐵𝐵 = calibrated weight for respondent 𝑖𝑖 in the EQ sample 

 1𝑖𝑖∈𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵 = 1 if respondent 𝑖𝑖 belongs to the BQ sample and is in 𝑠𝑠𝑠𝑠, 0 otherwise 

 1𝑖𝑖∈𝑠𝑠𝑠𝑠
𝐸𝐸𝐵𝐵 = 1 if respondent 𝑖𝑖 belongs to the EQ sample and is in 𝑠𝑠𝑠𝑠, 0 otherwise 

 

 𝑇𝑇𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵 = ∑ 𝑤𝑤𝑖𝑖

𝐵𝐵𝐵𝐵1𝑖𝑖∈𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵

𝑖𝑖∈𝐵𝐵𝐵𝐵  is the estimated number of persons in the population in cell 𝑠𝑠𝑠𝑠 in the BQ (the summation is 
over the entire BQ sample) 

 𝑇𝑇𝑠𝑠𝑠𝑠
𝐸𝐸𝐵𝐵 = ∑ 𝑤𝑤𝑖𝑖

𝐸𝐸𝐵𝐵1𝑖𝑖∈𝑠𝑠𝑠𝑠
𝐸𝐸𝐵𝐵

𝑖𝑖∈𝐸𝐸𝐵𝐵  is the estimated number of persons in the population in cell 𝑠𝑠𝑠𝑠 in the EQ (the summation is 
over the entire EQ sample) 

Extension of the notation is obvious, and leads to new quantities; e.g.: 

 Change from 𝑠𝑠𝑠𝑠 to 𝑠𝑠, which among other things leads to 𝑇𝑇𝑠𝑠
𝐵𝐵𝐵𝐵, i.e. the estimated number of persons in the population 

in cell 𝑠𝑠 in the BQ. 

 Change from 𝑠𝑠𝑠𝑠 to 𝑠𝑠, which among other things leads to 𝑇𝑇𝑠𝑠
𝐵𝐵𝐵𝐵, i.e. the estimated number of persons in the population 

in cell 𝑠𝑠 in the BQ. 

 Change from 𝑠𝑠𝑠𝑠 to 𝑠𝑠𝑠𝑠𝑏𝑏, which among other things leads to 

o 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵, i.e. the estimated number of persons in the population in cell 𝑠𝑠𝑠𝑠𝑏𝑏 (or: in cell 𝑠𝑠𝑠𝑠 and with ILO status 

STAT1 = 𝑏𝑏) in the BQ; 

o 1𝑖𝑖∈𝑠𝑠𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵 = 1 if respondent 𝑖𝑖 belongs to the BQ sample, is in cell 𝑠𝑠𝑠𝑠 and has ILO status STAT1 = 𝑏𝑏 (or is in cell 
𝑠𝑠𝑠𝑠𝑏𝑏 for short), 0 otherwise; 



  |54| 

 

o 1𝑖𝑖∈𝑠𝑠𝑠𝑠𝑠𝑠
𝐸𝐸𝐵𝐵 = 1 if respondent 𝑖𝑖 belongs to the EQ sample, is in cell 𝑠𝑠𝑠𝑠 and has ILO status STAT2 = 𝑏𝑏 (or is in cell 
𝑠𝑠𝑠𝑠𝑏𝑏 for short), 0 otherwise. 

C.2 CLASSICAL METHOD (NC-C) 

NC-C model SEX * REG1 – a post-stratification model – implies a system of (calibration) equations, more specifically: a 
calibration equation for each cell 𝑠𝑠𝑠𝑠: 

�𝑔𝑔𝑖𝑖𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵1𝑖𝑖∈𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵 = 𝑇𝑇𝑠𝑠𝑠𝑠
𝐸𝐸𝐵𝐵 

Note that the summation in the left-hand side of this equation runs across the entire BQ sample; this is so for every calibration 
equation in this annex, as it concerns the calibration of the BQ sample (to the calibrated EQ sample). The variables or 
unknowns in this system are the correction factors 𝑔𝑔𝑖𝑖  (for individuals 𝑖𝑖 who belong to the BQ sample); a solution is sought 
with numerical methods. 

Since 𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑠𝑠𝑠𝑠 , for all 𝑖𝑖 ∈ 𝑠𝑠𝑠𝑠 (calibration theory!) in the BQ sample, it follows that 

𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑠𝑠𝑠𝑠
𝐸𝐸𝐵𝐵

∑𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵1𝑖𝑖∈𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵� = 𝑇𝑇𝑠𝑠𝑠𝑠
𝐸𝐸𝐵𝐵

𝑇𝑇𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵�  

whereby it is assumed that 𝑇𝑇𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵 > 0. If 𝑇𝑇𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵 = 0 for one or more cells 𝑠𝑠𝑠𝑠, while 𝑇𝑇𝑠𝑠𝑠𝑠
𝐸𝐸𝐵𝐵 > 0, then NC-C model SEX * REG1 cannot 

be applied, i.e. the system of calibration equations has no solution. Cells 𝑠𝑠𝑠𝑠 for which 𝑇𝑇𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵 > 0 and 𝑇𝑇𝑠𝑠𝑠𝑠

𝐸𝐸𝐵𝐵 = 0 do not pose a 
problem in technical terms, and then for these cells 𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑠𝑠𝑠𝑠 = 0. 

The alternative NC-C model SEX + REG1 implies the system of calibration equations: 

�𝑔𝑔𝑖𝑖𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵1𝑖𝑖∈𝑠𝑠

𝐵𝐵𝐵𝐵 = 𝑇𝑇𝑠𝑠
𝐸𝐸𝐵𝐵 for each 𝑠𝑠

�𝑔𝑔𝑖𝑖𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵1𝑖𝑖∈𝑠𝑠

𝐵𝐵𝐵𝐵 = 𝑇𝑇𝑠𝑠
𝐸𝐸𝐵𝐵 for each 𝑠𝑠

 

We assume that this system has a solution. Calibration theory states that still 𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑠𝑠𝑠𝑠 for all 𝑖𝑖 ∈ 𝑠𝑠𝑠𝑠, i.e. the correction factors 
are constant within each combination 𝑠𝑠𝑠𝑠, but an expression in closed form as in the case of NC-C model SEX * REG1 cannot 
be found. The 𝑔𝑔𝑠𝑠𝑠𝑠  are then obtained by solving the system of calibration equations using iteration, after choosing a target 
function that measures a (kind of) quasi-distance between the initial weights 𝑤𝑤𝑖𝑖

𝐵𝐵𝐵𝐵  and the calibrated weights 𝑔𝑔𝑖𝑖𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵. That 

target function (or distance) should be minimised under the system of calibration equations. (For a given choice of target 
function, the iterative method can be reduced to IPF.) 

C.3 EUROSTAT METHOD (NC-E) 

NC-E model SEX * REG1 * STAT1 – likewise a post-stratification model – implies for each combination 𝑠𝑠𝑠𝑠 three 
calibration equations: 

�𝑔𝑔𝑖𝑖𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵1𝑖𝑖∈𝑠𝑠𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵 = 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵 for  𝑏𝑏 = 1 and 2

�𝑔𝑔𝑖𝑖𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵1𝑖𝑖∈𝑠𝑠𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵 = 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵 + �𝑇𝑇𝑠𝑠𝑠𝑠

𝐸𝐸𝐵𝐵 − 𝑇𝑇𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵� = 𝑇𝑇�𝑠𝑠𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵 for 𝑏𝑏 = 3
 

Again, we assume that the system of calibration equations (one equation for each combination 𝑠𝑠𝑠𝑠𝑏𝑏) has a solution. 

The equations for 𝑏𝑏 = 1 (unemployed) and 2 (employed) result in 

𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵� = 1 

if 𝑖𝑖 belongs to cell 𝑠𝑠𝑠𝑠 and has ILO status STAT1 = 𝑏𝑏 in the BQ. Of course, provided that 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵 ≠ 0. 

Note that 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵 = 0 will generally occur if the BQ sample has no respondents 𝑖𝑖 ∈ 𝑠𝑠𝑠𝑠𝑏𝑏: in this case, no 𝑔𝑔𝑖𝑖  needs to be 

determined for 𝑖𝑖 ∈ 𝑠𝑠𝑠𝑠𝑏𝑏; for such an empty cell 𝑠𝑠𝑠𝑠𝑏𝑏 it is of course not necessary to include a calibration equation in the system. 
The case 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵 = 0 could (exceptionally) also occur for a non-empty cell 𝑠𝑠𝑠𝑠𝑏𝑏, namely if 𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵 = 0 for all 𝑖𝑖 ∈ 𝑠𝑠𝑠𝑠𝑏𝑏; in this case, 
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the 𝑔𝑔𝑖𝑖  can take on an arbitrary (constant) value. 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵 < 0 is excluded, because in the calibration of the BQ sample the initial 

weights are positive, and the calibration method is chosen so that the correction factors are non-negative, so that all 𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵 ≥

0. 

The equation for 𝑏𝑏 = 3 (inactive persons) results in 

𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇�𝑠𝑠𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵� =

�𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵 + �𝑇𝑇𝑠𝑠𝑠𝑠

𝐸𝐸𝐵𝐵 − 𝑇𝑇𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵��

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵� = 1 +

𝑇𝑇𝑠𝑠𝑠𝑠
𝐸𝐸𝐵𝐵 − 𝑇𝑇𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵  

if 𝑖𝑖 belongs to cell 𝑠𝑠𝑠𝑠 and has ILO status STAT1 = 𝑏𝑏 = 3 in the BQ. Here, too, we suppose that 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵 ≠ 0, and the same remarks 

as for the equations for 𝑏𝑏 = 1 and 𝑏𝑏 = 2 can be made. 

As such, unemployed and employed persons in the BQ sample do not get a new calibrated weight, inactive persons in the BQ 
sample may get one if 𝑖𝑖 belongs to a cell 𝑠𝑠𝑠𝑠 for which 𝑇𝑇𝑠𝑠𝑠𝑠

𝐸𝐸𝐵𝐵 ≠ 𝑇𝑇𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵. 

It is important to note that the calibration total 𝑇𝑇�𝑠𝑠𝑠𝑠3
𝐵𝐵𝐵𝐵 can be negative – meaning that the correction factor 𝑔𝑔𝑖𝑖  can also be 

negative – i.e. for a cell 𝑠𝑠𝑠𝑠 for which 𝑇𝑇�𝑠𝑠𝑠𝑠3
𝐵𝐵𝐵𝐵 = 𝑇𝑇𝑠𝑠𝑠𝑠3

𝐵𝐵𝐵𝐵 + �𝑇𝑇𝑠𝑠𝑠𝑠
𝐸𝐸𝐵𝐵 − 𝑇𝑇𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵� < 0 or 𝑇𝑇𝑠𝑠𝑠𝑠3
𝐵𝐵𝐵𝐵 < 𝑇𝑇𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵 − 𝑇𝑇𝑠𝑠𝑠𝑠
𝐸𝐸𝐵𝐵, i.e. when the estimated total 

number of people in cell 𝑠𝑠𝑠𝑠 decreases between BQ and EQ (i.e. 𝑇𝑇𝑠𝑠𝑠𝑠
𝐸𝐸𝐵𝐵 < 𝑇𝑇𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵), and this decrease (in absolute value) is greater 
than the number of inactive persons 𝑇𝑇𝑠𝑠𝑠𝑠3

𝐵𝐵𝐵𝐵 in cell 𝑠𝑠𝑠𝑠 in the BQ. Consequently, we find that Eurostat's method for achieving 
numerical consistency between the BQ and EQ samples can lead to calibration models with negative calibration totals. See 
section 2.5.4 in chapter 2 for an illustration. 

The alternative NC-E model (SEX + REG1) * STAT1 implies for each 𝑠𝑠 three calibration equations: 

�𝑔𝑔𝑖𝑖𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵1𝑖𝑖∈𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵 = 𝑇𝑇𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵 for 𝑏𝑏 = 1 and 2

�𝑔𝑔𝑖𝑖𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵1𝑖𝑖∈𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵 = 𝑇𝑇𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵 + �𝑇𝑇𝑠𝑠

𝐸𝐸𝐵𝐵 − 𝑇𝑇𝑠𝑠
𝐵𝐵𝐵𝐵� = 𝑇𝑇�𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵 for 𝑏𝑏 = 3
 

and for each 𝑠𝑠 also three calibration equations: 

�𝑔𝑔𝑖𝑖𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵1𝑖𝑖∈𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵 = 𝑇𝑇𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵 for 𝑏𝑏 = 1 and 2

�𝑔𝑔𝑖𝑖𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵1𝑖𝑖∈𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵 = 𝑇𝑇𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵 + �𝑇𝑇𝑠𝑠

𝐸𝐸𝐵𝐵 − 𝑇𝑇𝑠𝑠
𝐵𝐵𝐵𝐵� = 𝑇𝑇�𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵 for 𝑏𝑏 = 3
 

Assuming that this system has a solution 𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 (𝑖𝑖 ∈ 𝑠𝑠𝑠𝑠𝑏𝑏), then it cannot (generally) be expressed in closed form, but can 
be found by applying a numerical algorithm that simultaneously gives a solution for the system and minimises a chosen target 
function, which again measures a quasi-distance between initial weights 𝑤𝑤𝑖𝑖

𝐵𝐵𝐵𝐵  and calibrated weights 𝑔𝑔𝑖𝑖𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵 . For this, Statbel 

currently uses the SAS® macro CALMAR2. 

Note that, for example, the equation ∑𝑔𝑔𝑖𝑖𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵1𝑖𝑖∈𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵 = 𝑇𝑇𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵 in NC-E model (SEX + REG1) * STAT1 is the sum over 𝑠𝑠 of the 

equations ∑𝑔𝑔𝑖𝑖𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵1𝑖𝑖∈𝑠𝑠𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵 = 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵 in NC-E model SEX * REG1 * STAT1, for each 𝑠𝑠 and for 𝑏𝑏 = 1 or 𝑏𝑏 = 2. Similarly, the equation 

∑𝑔𝑔𝑖𝑖𝑤𝑤𝑖𝑖
𝐵𝐵𝐵𝐵1𝑖𝑖∈𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵 = 𝑇𝑇�𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵 in NC-E model (SEX + REG1) * STAT1 is the sum over 𝑠𝑠 of the equations ∑𝑔𝑔𝑖𝑖𝑤𝑤𝑖𝑖

𝐵𝐵𝐵𝐵1𝑖𝑖∈𝑠𝑠𝑠𝑠𝑠𝑠
𝐵𝐵𝐵𝐵 = 𝑇𝑇�𝑠𝑠𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵  in NC-E 
model SEX * REG1 * STAT1, for each 𝑠𝑠 and for 𝑏𝑏 = 3. In practical terms, this means that if the calibration totals for the 
"maximum" NC-E model (SEX * REG1 * …) * STAT1 are determined, by simple summations of these calibration totals, the 
calibration totals for any "more limited" NC-E model, such as for example (SEX + REG1 + ...) * STAT1, can be obtained. This 
also means that any negative calibration totals 𝑇𝑇�𝑠𝑠𝑠𝑠3

𝐵𝐵𝐵𝐵 in the maximum model may change to non-negative totals 𝑇𝑇�𝑠𝑠3
𝐵𝐵𝐵𝐵 and/or 

𝑇𝑇�𝑠𝑠3
𝐵𝐵𝐵𝐵 in the more limited model. 

Negative calibration totals are not common in practice, when a sample has to be calibrated to (estimated) population 
distributions, as the latter are always expressed in non-negative numbers. However, the explanations above show that 
negative calibration totals can logically result if the Eurostat method is chosen to achieve numerical consistency between the 
BQ and EQ samples. The occurrence of negative calibration totals is of course related to the chosen NC-E model, and, as 
explained in section 2.6 in chapter 2, this choice is related to the objectives of the calibration of the LS, i.e. to the required 
coherence between the marginals of transition matrices and the ILO status distributions in the BQ and the EQ. CALMAR2 
makes it possible to work with negative calibration totals, provided a suitable calibration method is chosen. The (truncated) 
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linear and the logit method allow negative correction factors, and thus negative calibrated weights; while the exponential or 
raking ratio, and the sine hyperbolic method, do not. Consequently, we have to choose either the (truncated) linear or the 
logit method to apply NC-E models, and in order not to have to change the method depending on whether or not negative 
calibration totals are to be used. 

As we (currently) see no reason to limit the correction factors to a given interval, we will ultimately always choose the linear 
method when applying NC-E models. 
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D PERTURBATION OF THE LS IN SMALL SUB-POPULATIONS, IN VIEW OF 
CONSISTENCY REQUIREMENTS 

The fact that the LS, as an overlap of the BQ and EQ samples, only contains about 50% of the respondents from each of the 
latter samples may pose a problem for small sub-populations in terms of achieving the desired consistency between the 
marginals of the transition matrix for that sub-population and the quarterly distributions of ILO status. A technical 
intervention – a perturbation of the LS – was worked out in this regard. We illustrate this using the sub-population of 65-74-
year-olds, for the pair of quarters 2018Q3-2018Q4. 

Table B 3 shows the following: 

 Column (1): the BQ sample contains 4,663 respondents in the age group 65-74, 2 among whom are unemployed (in 
2018Q3); column (3): only 1 of those 2 unemployed belongs to the LS; 

 Column (2): The estimated distribution of ILO status in the BQ, in terms of number of unemployed and number of 
employed, should be reproduced in the transition matrix for 65-74-year-olds (if the LS model contains the term 
AGE1*STAT1); 

 Column (4): the EQ sample contains 4,781 respondents in the age group 65-74, among whom 1 is unemployed (in 
2018Q4); column (6): this unemployed person is not retained in the LS; 

 Column (5): The estimated distribution of ILO status in the EQ must be fully reproduced in the transition matrix for 
65-74-year-olds (if the LS model contains the term AGE2*STAT2). 

Table B 3 Distribution by ILO status of 65-74-year-old respondents in BQ and EQ sample – with estimated distributions of 
ILO status –, and of 65-74-year-old respondents in BQ and in EQ in the LS for 2018Q3-2018Q4 

 BQ ~ 2018Q3 EQ ~ 2018Q4 
ILO status Number of 

resp. in the 
BQ sample 

Estimated 
distribution 
ILO status 

Number 
of resp. 
in the LS 

Number of 
resp. in the EQ 
sample 

Estimated 
distribution 
ILO status 

Number 
of resp. 
in the LS 

(1) (2) (3) (4) (5) (6) 
Unemployed 2 529.69 1 1   50.08 0 
Employed  195 47,611.51 79 209 46,172.90 86 
Inactive 4,466 1,079,204.22 2,134 4,571 1,085,211.02 2,189 
Total 4,663 1,127,345.42 2,214 4,781 1,131,434.00 2,275 

Table B 4, panel “Before perturbation”, shows the distribution of the LS for 65-74-year-old respondents in the EQ according 
to ILO status in BQ and EQ (i.e. the unweighted transition matrix for 65-74-year-olds in the EQ). With regard to reproducing 
the distribution of ILO status in the EQ, the absence of unemployed respondents in the EQ in this LS poses a problem: the 
quarterly estimate 50.08 for the number of unemployed in EQ, and consequently the distribution of ILO status in the EQ 
(column (5) in Table B 3) cannot be reproduced. 

Table B 4 Distribution according to ILO status in BQ and EQ of respondents aged 65-74 in the EQ, in the LS for 2018Q3-
2018Q4, before and after perturbation of the LS 

 ILO status EQ (2018Q4) 
 Before perturbation After perturbation 
ILO status 
BQ (2018Q3) 

Unemployed Employed  Inactive Total Unemployed Employed  Inactive Total 

Unemployed 0 0 1 1 0 0 1 1 
Employed  0 69 23 92 0 69 23 92 
Inactive 0 17 2,165 2,182 1 17 2,164 2,182 
Total 0 86 2,189 2,275 1 86 2,188 2,275 
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An obvious way to solve this problem is to modify the LS calibration model, e.g. by working with other age groups (e.g. by 
using variable AGE2 instead of AGE2, so that age group 65-74 merges into the larger group 55-74; see section 2.1). However, 
this method does not allow the predefined ILO status distributions (e.g. for 55-64- and 65-74-year-olds separately) to be 
reproduced. As such, in the context of calibration for estimating transition matrices, we choose an alternative approach: the 
calibration model is not changed, but we perform a (minimal) random perturbation of the LS sample. 

The perturbation implemented by Statbel is as follows: one of the persons inactive in the EQ in the LS (there are 2,189) is 
selected at random and his or her ILO status in the EQ is changed from inactive to unemployed. One possible result of this 
can be seen in the "After perturbation" panel of Table B 4; in this case, a respondent who is also inactive in the BQ was 
selected by chance (but with high probability!), but this is not necessarily always the case. The sample modified in this way 
(for 65-74-year-olds) does allow the term AGE2*STAT2 to be used in the LS calibration model – provided, of course, that 
other sub-populations do not pose a problem either. 

In Table B 5 we show the estimated transition matrix for the sub-population of 65-74-year-olds, after applying the final 
calibration model LS-4 (after applying NC-E-3a) to the whole LS for 2018Q3-2018Q4. Note that the structure of this matrix is 
the same as the structure of the LS in the “After perturbation” panel of Table B 4. The marginals of the transition matrix 
reproduce, as desired, the distributions of ILO status in BQ and EQ that were shown in Table B 3 (columns (2) and (5)). 

Table B 5 Estimated transition matrix for 65-74-year-olds in the EQ, after application of the final calibration model to the 
LS for 2018Q3-2018Q4, and after perturbation of the LS 

 ILO status EQ (2018Q4) 
ILO status 
EQ (2018Q3) 

Unemployed Employed  Inactive Total 

Unemployed   - - 529.69 529.69 
Employed - 33,523.40 14,088.11 47,611.51 
Inactive 50.08 12,649.50 1,070,593.24 1,083,292.82 
Total 50.08 46,172.90 1,085,211.04 1,131,434.01 

Note that for 2018Q3-2018Q4, applying model LS-3 (after NC-E-3a) also requires a perturbation, as models LS-3 and LS-4 
imply the same consistency requirements. 

At the time this analysis was completed, 27 separate calibrations of LSs had already been performed: for the estimation of 
quarterly transitions for 15 pairs (2017Q1-2017Q2 to 2020Q3-2020Q4) and for the estimation of quarter-specific annual 
transitions for 12 pairs (2017Q1-2018Q1 to 2019Q4-2020Q4). For 11 of these 27 pairs, we used the perturbation technique 
to apply the final calibration model (section 2.7). In 5 of these 11 cases, the ILO status in the EQ of one arbitrary respondent 
in the LS changed from inactive to unemployed; in 5 other cases, the ILO status in the BQ of one arbitrary respondent in the 
LS changed from inactive to unemployed; in 1 case, the ILO status in the EQ of one arbitrary respondent in the LS changed 
from inactive to unemployed and also the ILO status in the BQ of one other arbitrary respondent in the LS changed from 
inactive to unemployed. 

It is clear that this perturbation can also be applied in other sub-populations if necessary and/or if another ILO status is not 
represented, possibly if a different calibration model – e.g. in view of other consistency requirements – has to be applied. 
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